INTRODUCTION:

The two major types of lung cancer are small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC differs significantly from NSCLC in that most patients with SCLC present with subclinical metastatic disease. Patients with SCLC are divided into those with limited- versus extensive-stage disease. Although limited-stage disease is confined to the ipsilateral hemithorax, a third of these patients have subclinical systemic disease. Extensive-stage disease is defined as disease extending beyond the ipsilateral hemithorax, including positive pleural/pericardial effusion or distant metastases. Systemic chemotherapy is an essential component of appropriate treatment for all SCLC patients, even those with limited-stage disease.

This guideline outlines methods suitable for the delivery of radiation therapy to treat SCLC. Radiation therapy may be delivered using conventional, accelerated fractionation, hyperfractionated regimens and prophylactic cranial irradiation. Three-dimensional conformal radiation therapy (3D-CRT) is the preferred technique. If image guided radiation therapy is utilized, techniques to account for respiratory motion should be performed. The goal of this guideline is to guide diagnosis and treatment to the most efficient, comparatively effective, diagnostic and treatment pathway.

SCLC is highly sensitive to initial chemotherapy and radiation therapy; however, a cure is difficult to achieve because SCLC generally has a rapid doubling time, a high growth fraction, and early development of widespread metastases.

The treatment goal in patients with limited-stage disease is to achieve a cure with chemotherapy combined with thoracic radiation therapy. In patients with extensive-stage disease, this combined modality treatment does not improve survival compared with chemotherapy alone, but radiation therapy plays a role in palliation of symptoms. All patients with SCLC require systemic chemotherapy and where radiation therapy is utilized, it should be delivered concurrently with chemotherapy. Patients with both limited- and extensive-stage disease may benefit from prophylactic cranial irradiation (PCI), decreasing the incidence of central nervous system metastases and prolonging survival. Two-dimensional, post lateral fields should be used in PCI treatment.
INDICATIONS FOR RADIATION THERAPY

**Limited-Stage SCLC (T1-2, N1-N3 M0)**
- 2D or 3D Conformal Radiation Therapy (3DCRT)

**Dosage Guidelines:**
- 45 Gy in 3 weeks at 1.5 Gy BID or 45 Gy in 5 weeks at 1.8 Gy up to 30 fractions
- 60-70 Gy at 1.8 - 2.0 Gy per fraction up to 39 fractions

**Extensive-Stage SCLC (T any, N any, M1a/b; T3-4)**
2D or 3D Conformal Radiation Therapy (3DCRT) Radiation therapy to treat symptomatic sites or treatment of cord compression

**Dosage Guidelines:**
- 30 – 54 Gy in 2-3 Gy daily up to 27 fractions
- 45 Gy in 3 weeks at 1.5 Gy BID or 45 Gy in 5 weeks at 1.8 Gy up to 30 fractions
- 60-70 Gy at 1.8 - 2.0 Gy per fraction up to 39 fractions

**Prophylactic cranial irradiation (PCI)** is indicated for Limited and Extensive SCLC. PCI is used to decrease the incidence of central nervous system metastases and prolong survival.
- 2D or 3D Conformal Radiation Therapy (3DCRT)

**Dosage Guidelines**
- 24 -30 Gy in delivered in 8-15 daily fractions

**TREATMENT OPTIONS REQUIRING PHYSICIAN REVIEW:**

**Intensity Modulated Radiation Therapy (IMRT)**
IMRT is not indicated as a standard treatment option and should not be used routinely for the delivery of radiation therapy for small cell lung cancer. IMRT may be appropriate for limited circumstances in which radiation therapy is indicated and 3D conformal radiation therapy (3D-CRT) techniques cannot adequately deliver the radiation prescription without exceeding normal tissue radiation tolerance, the delivery is anticipated to contribute to potential late toxicity or tumor volume dose heterogeneity is such that unacceptable hot or cold spots are created. If IMRT is utilized, techniques to account for respiratory motion should be performed.

Clinical rationale and documentation for performing IMRT rather than 2D or 3D-CRT treatment planning and delivery will need to:

- Demonstrate how 3D-CRT isodose planning cannot produce a satisfactory treatment plan (as stated above) via the use of a patient specific dose volume histograms and isodose plans.
- Provide tissue constraints for both the target and affected critical structures.
Proton Beam Radiation Therapy
Proton beam is not an approved treatment option for small cell lung cancer. There are limited clinical studies comparing proton beam therapy to 3-D conformal radiation. Overall, studies have not shown clinical outcomes to be superior to conventional radiation therapy.

Stereotactic Body Radiation Therapy (SBRT)
Stereotactic Body Radiation Therapy (SBRT) is not considered a standard form of treatment for SCL cancer. Overall, studies have not shown clinical outcomes to be superior to conventional radiation therapy. A request for SBRT will require a peer review to make a medical necessity determination.
REFERENCES:


