2017 MAGELLAN® CLINICAL GUIDELINES FOR MEDICAL NECESSITY REVIEW

BLUE SHIELD CA

Version: 3
Effective: January 2017
Guidelines for Clinical Review Determination

Preamble
Magellen is committed to the philosophy of supporting safe and effective treatment for patients. The medical necessity criteria that follow are guidelines for the provision of diagnostic imaging. These criteria are designed to guide both providers and reviewers to the most appropriate diagnostic tests based on a patient’s unique circumstances. In all cases, clinical judgment consistent with the standards of good medical practice will be used when applying the guidelines. Guideline determinations are made based on the information provided at the time of the request. It is expected that medical necessity decisions may change as new information is provided or based on unique aspects of the patient’s condition. The treating clinician has final authority and responsibility for treatment decisions regarding the care of the patient.

Guideline Development Process
These medical necessity criteria were developed by Magellan Healthcare for the purpose of making clinical review determinations for requests for diagnostic tests. The developers of the criteria sets included representatives from the disciplines of radiology, internal medicine, nursing, and cardiology and other specialty groups. They were developed following a literature search pertaining to established clinical guidelines and accepted diagnostic imaging practices.

All inquiries should be directed to:
Magellan Healthcare
PO Box 67390
Phoenix, AZ 85082-7390
Attn: Magellan Healthcare Chief Medical Officer
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>TOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED IMAGING GUIDELINES</td>
<td>5</td>
</tr>
<tr>
<td>70336 – MRI Temporomandibular Joint (TMJ)</td>
<td>5</td>
</tr>
<tr>
<td>70450 – CT Head/Brain</td>
<td>7</td>
</tr>
<tr>
<td>70480 – CT Orbit (Includes Sella and Posterior Fossa)</td>
<td>13</td>
</tr>
<tr>
<td>70480 – CT Internal Auditory Canal</td>
<td>15</td>
</tr>
<tr>
<td>70480 – CT Sella</td>
<td>18</td>
</tr>
<tr>
<td>70486 – Face CT</td>
<td>20</td>
</tr>
<tr>
<td>70486 – Maxillofacial/Sinus CT</td>
<td>22</td>
</tr>
<tr>
<td>70490 – CT Soft Tissue Neck</td>
<td>25</td>
</tr>
<tr>
<td>70496 – CT Angiography, Head/Brain</td>
<td>28</td>
</tr>
<tr>
<td>70498 – CT Angiography, Neck</td>
<td>31</td>
</tr>
<tr>
<td>70540 – MRI Orbit</td>
<td>34</td>
</tr>
<tr>
<td>70540 – MRI Face</td>
<td>37</td>
</tr>
<tr>
<td>70540 – MRI Neck</td>
<td>38</td>
</tr>
<tr>
<td>70540 – MRI Sinus</td>
<td>41</td>
</tr>
<tr>
<td>70544 – MR Angiography Head/Brain</td>
<td>43</td>
</tr>
<tr>
<td>70547 – MR Angiography Neck</td>
<td>47</td>
</tr>
<tr>
<td>70551 – MRI Brain (includes Internal Auditory Canal)</td>
<td>50</td>
</tr>
<tr>
<td>70554 – Functional MRI Brain</td>
<td>57</td>
</tr>
<tr>
<td>71250 – CT Chest (Thorax)</td>
<td>59</td>
</tr>
<tr>
<td>71275 – CT Angiography, Chest (non coronary)</td>
<td>64</td>
</tr>
<tr>
<td>71550 – MRI Chest (Thorax)</td>
<td>67</td>
</tr>
<tr>
<td>71555 – MR Angiography Chest (excluding myocardium)</td>
<td>70</td>
</tr>
<tr>
<td>72125 – CT Cervical Spine</td>
<td>73</td>
</tr>
<tr>
<td>72128 – CT Thoracic Spine</td>
<td>77</td>
</tr>
<tr>
<td>72131 – CT Lumbar Spine</td>
<td>81</td>
</tr>
<tr>
<td>72141 – MRI Cervical Spine</td>
<td>86</td>
</tr>
<tr>
<td>72146 – MRI Thoracic Spine</td>
<td>92</td>
</tr>
<tr>
<td>72148 – MRI Lumbar Spine</td>
<td>97</td>
</tr>
<tr>
<td>72159 – MR Angiography Spinal Canal</td>
<td>103</td>
</tr>
<tr>
<td>72191 – CT Angiography, Pelvis</td>
<td>105</td>
</tr>
<tr>
<td>72192 – CT Pelvis</td>
<td>109</td>
</tr>
<tr>
<td>72196 – MRI Pelvis</td>
<td>116</td>
</tr>
<tr>
<td>72198 – MR Angiography, Pelvis</td>
<td>122</td>
</tr>
<tr>
<td>73200 – CT Upper Extremity (Hand, Wrist, Elbow, Long Bone or Shoulder)</td>
<td>125</td>
</tr>
<tr>
<td>73206 – CT Angiography, Upper Extremity</td>
<td>131</td>
</tr>
<tr>
<td>73220 – MRI Upper Extremity</td>
<td>133</td>
</tr>
<tr>
<td>73225 – MR Angiography Upper Extremity</td>
<td>138</td>
</tr>
<tr>
<td>73700 – CT Lower Extremity (Ankle, Foot, Hip or Knee)</td>
<td>140</td>
</tr>
<tr>
<td>73706 – CT Angiography, Lower Extremity</td>
<td>145</td>
</tr>
<tr>
<td>73720 – MRI Lower Extremity (Ankle, Foot, Knee, Hip, Leg)</td>
<td>147</td>
</tr>
<tr>
<td>73725 – MR Angiography, Lower Extremity</td>
<td>152</td>
</tr>
</tbody>
</table>
Imaging Procedures

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>74150</td>
<td>CT Abdomen</td>
<td>154</td>
</tr>
<tr>
<td>74174</td>
<td>CT Angiography, Abdomen and Pelvis</td>
<td>162</td>
</tr>
<tr>
<td>74175</td>
<td>CT Angiography, Abdomen</td>
<td>166</td>
</tr>
<tr>
<td>74176</td>
<td>CT Abdomen and Pelvis Combo</td>
<td>170</td>
</tr>
<tr>
<td>74181</td>
<td>MRI Abdomen</td>
<td>177</td>
</tr>
<tr>
<td>74185</td>
<td>MR Angiography, Abdomen</td>
<td>182</td>
</tr>
<tr>
<td>74261</td>
<td>CT Colonoscopy Diagnostic (Virtual)</td>
<td>186</td>
</tr>
<tr>
<td>74263</td>
<td>CT Colonoscopy Screening (Virtual)</td>
<td>186</td>
</tr>
<tr>
<td>75557</td>
<td>MRI Heart</td>
<td>188</td>
</tr>
<tr>
<td>75571</td>
<td>Electron Beam Tomography (EBCT)</td>
<td>203</td>
</tr>
<tr>
<td>75572</td>
<td>CT Heart</td>
<td>204</td>
</tr>
<tr>
<td>75574</td>
<td>CTA Coronary Arteries (CCTA)</td>
<td>205</td>
</tr>
<tr>
<td>75635</td>
<td>CT Angiography, Abdominal Arteries</td>
<td>221</td>
</tr>
<tr>
<td>76390</td>
<td>MR Spectroscopy</td>
<td>223</td>
</tr>
<tr>
<td>77012</td>
<td>CT Needle Guidance</td>
<td>224</td>
</tr>
<tr>
<td>77021</td>
<td>MRI Guidance for Needle Placement</td>
<td>224</td>
</tr>
<tr>
<td>77058</td>
<td>MRI Breast</td>
<td>225</td>
</tr>
<tr>
<td>77084</td>
<td>MRI Bone Marrow</td>
<td>228</td>
</tr>
<tr>
<td>78451</td>
<td>Myocardial Perfusion Imaging (Nuc Card)</td>
<td>230</td>
</tr>
<tr>
<td>78459</td>
<td>PET Scan, Heart (Cardiac)</td>
<td>246</td>
</tr>
<tr>
<td>78472</td>
<td>MUGA Scan</td>
<td>248</td>
</tr>
<tr>
<td>78608</td>
<td>PET Scan, Brain</td>
<td>251</td>
</tr>
<tr>
<td>78813</td>
<td>PET Scan</td>
<td>254</td>
</tr>
<tr>
<td>0042T</td>
<td>Cerebral Perfusion Analysis CT</td>
<td>261</td>
</tr>
<tr>
<td>+0159T</td>
<td>CAD Breast MRI</td>
<td>263</td>
</tr>
<tr>
<td>G0235</td>
<td>PET imaging, any site, not otherwise specified</td>
<td>264</td>
</tr>
<tr>
<td>G0252</td>
<td>PET imaging, initial diagnosis of breast cancer</td>
<td>265</td>
</tr>
<tr>
<td>S8037</td>
<td>MR Cholangiopancreatography (MRCP)</td>
<td>266</td>
</tr>
<tr>
<td>S8032</td>
<td>Low Dose CT for Lung Cancer Screening</td>
<td>269</td>
</tr>
</tbody>
</table>

MUSCULOSKELETAL_SPINE SURGERY GUIDELINES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22600/63001</td>
<td>Cervical Spinal Surgery</td>
<td>270</td>
</tr>
<tr>
<td>22612/63030</td>
<td>Lumbar Spinal Surgery</td>
<td>285</td>
</tr>
<tr>
<td>22857</td>
<td>Lumbar Artificial Disc Replacement Surgery</td>
<td>296</td>
</tr>
<tr>
<td>62321, 62323</td>
<td>Spinal Epidural Injections</td>
<td>298</td>
</tr>
<tr>
<td>64490-64493</td>
<td>Paravertebral Facet Joint Injections/Blocks</td>
<td>304</td>
</tr>
<tr>
<td>64633-64635</td>
<td>Paravertebral Facet Joint Neurolysis</td>
<td>308</td>
</tr>
<tr>
<td>27096</td>
<td>Sacroiliac Joint Injections</td>
<td>312</td>
</tr>
</tbody>
</table>

All guidelines were reviewed between January 1, 2016 and September 1, 2016.

Prepared March 21, 2017
INTRODUCTION:
Temporal mandibular joint (TMJ) dysfunction causes pain and dysfunction in the jaw joint and muscles controlling jaw movement. Symptoms may include: jaw pain, jaw muscle stiffness, limited movement or locking of the jaw, clicking or popping in jaw joint when opening or closing the mouth, and a change in how the upper and lower teeth fit together. The cause of the condition is not always clear but may include trauma to the jaw or temporomandibular joint, e.g., grinding of teeth, clenching of jaw, or impact in an accident. Osteoarthritis or rheumatoid arthritis may also contribute to the condition. The modality of choice for the evaluation of temporomandibular joint dysfunction is magnetic resonance imaging (MRI) which provides tissue contrast for visualizing the soft tissue and periarticular structures of the TMJ.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR TEMPOROMANDIBULAR JOINT (TMJ) MRI:
- For evaluation of dysfunctional temporomandibular joint after unsuccessful conservative therapy for at least four (4) weeks with bite block or splint and anti-inflammatory medicine.
- For pre-operative evaluation of dysfunctional temporomandibular joint in candidates for orthognathic surgery.
- For evaluation of locked or frozen jaw.
- For persistent temporomandibular joint dysfunction after surgical repair.

ADDITIONAL INFORMATION RELATED TO TEMPOROMANDIBULAR JOINT (TMJ) MRI:
- Request for a follow-up study: A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
- MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.
- MRI Imaging of Temporomandibular Joint – Imaging of the temporomandibular joint has been difficult as the mandibular condyle is small and located close to dense and complex anatomic structures. MRI produces cross-sectional multiplanar images that document both soft and osseous tissue abnormalities of the joint and the surrounding structures and may help in determining the pathology around the joint.

REFERENCES:

CPT Codes: 70450 70460 70470

INTRODUCTION:

Computed tomography (CT) is an imaging technique used to view the structures of the brain and is useful in evaluating pathologies in the brain. It provides more detailed information on head trauma, brain tumors, stroke, and other pathologies in the brain than regular radiographs.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR BRAIN CT:

For evaluation of known or suspected seizure disorder:
- For the evaluation of a single study related to new onset of seizures or newly identified change in seizure activity/pattern AND cannot have a Brain MRI.

For evaluation of neurologic symptoms or deficits:
- Acute, new or fluctuating neurologic symptoms or deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes.

For evaluation of cognitive assessment:
- Change in mental status with a mental status score of either MMSE or MoCA of less than 26 or other similar mental status exams showing at least mild cognitive impairment AND a completed basic metabolic workup (such as thyroid function testing, liver function testing, complete blood count, electrolytes, and B12).

For evaluation of known or suspected trauma:
- Known or suspected trauma or injury to the head with documentation of one or more of the following acute, new or fluctuating:
 - Focal neurologic findings
 - Motor changes
 - Mental status changes
 - Amnesia
 - Vomiting
 - Seizures
 - Headache
 - Signs of increased intracranial pressure
- Known coagulopathy
- Known or suspected skull fracture by physical exam and/or positive x-ray.
- Repeat scan 24 hours post head trauma for anticoagulated patients with suspected diagnosis of delayed subdural hematoma.

For evaluation of headache:
- Chronic headache with a change in character/pattern (e.g., more frequent, increased severity or duration) and MRI is contraindicated or cannot be performed.
• New onset (< 48 hours) of “worst headache in my life” or “thunderclap” headache. Note: The duration of a thunderclap type headache lasts more than 5 minutes. Sudden onset new headache reaching maximum intensity within 2-3 minutes.

• New onset of headache with any acute, new or fluctuating neurologic deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes.

• Patient with history of cancer, or significantly immunocompromised, with new onset headache.

• New headache in occipitonasal region in individual > 55 years old.

• New temporal headache in person > 55, with sedimentation rate (ESR) > 55 with tenderness over the temporal artery and MRI is contraindicated or cannot be performed.

• With history or suspicion of aneurysm or AVM with new onset of headache.

For evaluation of known or suspected brain tumor, mass, or metastasis:

• Follow up for known tumor.

• Evaluation of suspected tumor with any acute, new or fluctuating neurologic symptoms or deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes.

• Known lung cancer, or rule out metastasis and/or preoperative evaluation.

• Evaluation of metastatic melanoma (not all melanomas).

• For patient with history of cancer with suspected recurrence or metastasis (based on symptoms or examination findings may include new or changing lymph nodes).

• Evaluation of patient with history of cancer that had a recent course of chemotherapy, radiation therapy (to the brain), or has been treated surgically within the last two (2) years.

• Evaluation for a bone tumor or abnormality of the skull.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:

• ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected stroke:

• To evaluate patient with history of a known stroke with new and sudden onset of severe headache.

• Known or suspected stroke with any acute, new or fluctuating symptoms or deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes or with a family history (brother, sister, parent or child) of aneurysm.

• Symptoms of transient ischemic attack (TIA) (episodic neurologic symptoms.)

For evaluation of known or suspected inflammatory disease or infection (e.g., meningitis, or abscess) and MRI is contraindicated or cannot be performed:

• Patients with suspected increased intracranial pressure or meningitis.

• Intracranial abscess or brain infection with acute altered mental status OR positive lab findings (such as elevated WBC’s) OR follow up assessment during or after treatment completed.

• Meningitis with positive physical findings (such as fever, stiff neck) and positive lab findings (such as elevated white blood cells or abnormal lumbar puncture fluid exam.)

• Suspected encephalitis with a severe headache, altered mental status OR positive lab finding, (such as elevated WBC’s).

• Endocarditis with suspected septic emboli.

• Evaluation for Central Nervous System (CNS) involvement in patients with known or suspected vasculitis or autoimmune disease with positive lab findings.
For evaluation of known or suspected congenital abnormality (such as hydrocephalus, craniosynostosis):
- Known or suspected congenital abnormality with any acute, new or fluctuating neurologic, motor or mental status changes.
- Evaluation of macrocephaly with child >6 months of age.
- Evaluation of microcephaly and MRI is contraindicated or cannot be performed
- Follow up shunt evaluation within six (6) months of placement or one (1) year follow up and/or with neurologic symptoms.
- Evaluation of craniosynostosis and other head deformities.
- To evaluate patient for suspected or known hydrocephalus.
- To evaluate patient for prior treatment OR treatment planned for congenital abnormality.

Suspected normal pressure hydrocephalus, (NPH) with symptoms.

Pre-operative evaluation for brain/skull surgery.

Post-operative/procedural evaluation:
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for a Brain CT:
- Evaluation of suspected acute subarachnoid hemorrhage (SAH).
- Follow up for known hemorrhage, hematoma or vascular abnormalities.
- Developmental delay where MRI cannot be performed.
- Vertigo associated with headache, blurred or double vision, or a change in sensation after full neurologic examination and initial work-up and MRI is contraindicated or cannot be performed.
- Abnormal eye findings on physical or neurologic examination (papilledema, nystagmus, ocular nerve palsies, visual field deficit etc).
- Anosmia (loss of smell) (documented by objective testing).
- For evaluation of known or suspected cerebrospinal fluid (CSF) leakage.
- Immunocompromised patient (e.g., transplant recipients, HIV with CD4<200, primary immunodeficiency syndromes, hematologic malignancies) with focal neurologic-symptoms, headaches, behavioral, cognitive or personality changes.
- Prior to lumbar puncture in patients with suspected increased intracranial pressure or at risk for herniation.
- Suspected cholesteatoma.

Indication for Brain CT/Cervical CT combination studies:
- For evaluation of Arnold Chiari malformation where MRI cannot be performed.

Brain CT/Orbit CT:
- For approved indications as noted above and being performed in a child under 3 years of age who will need anesthesia for the procedure and there is a suspicion of concurrent intracranial tumor (e.g. “trilateral retinoblastoma”)
- Unilateral papilledema: to distinguish a compressive lesion on the optic nerve or optic disc swelling associated with acute demyelinating optic neuritis in multiple sclerosis from nonarteritic anterior ischemic optic neuropathy (NAION), central retinal vein occlusion or optic nerve infiltrative disorders.
Brain CT/Neck CTA:
- Confirmed carotid stenosis >60%, surgery or angioplasty candidate

ADDITIONAL INFORMATION RELATED TO BRAIN CT:

CT scan for congenital abnormalities While MRI is preferred to CT for evaluation of most congenital CNS abnormalities, in some clinical situations CT is preferred (craniosynostosis) or equivalent to MRI. CT is appropriate in the follow up of hydrocephalus or VP shunt function where the etiology of hydrocephalus has been previously determined or in patients for which MRI evaluation would require general anesthesia.

CT scan for Headache Generally, magnetic resonance imaging is the preferred imaging technique for evaluating the brain parenchyma and CT is preferable for evaluating subarachnoid hemorrhage. CT is faster and more readily available than MRI and is often used in urgent clinical situations. Neurologic imaging is warranted in patients with headache disorders along with abnormal neurologic examination results or predisposing factors for brain pathology.

CT scan for Head Trauma Most types of head injury are minor injuries; clinical signs and symptoms help predict the need for brain CT following injury. CT has advantages in evaluating head injury due to its sensitivity for demonstrating mass effect, ventricular size and configuration, bone injuries and acute hemorrhage. A patient who presents with certain clinical risk factors may be more likely to benefit from CT imaging. Some of the clinical risk factors that may be used as a guide to predict the probability of abnormal CT following minor head injury are vomiting, skull fracture and age greater than 60 years. Patients with a Glasgow Coma Scale of 15 or less who also have vomiting or suspected skull fracture are likely to show abnormal results on CT scan. CT is also useful in detecting delayed hematoma, hypoxic-ischemic lesions or cerebral edema in the first 72 hours after head injury.

CT scan for Stroke – Patients presenting with symptoms of acute stroke should receive prompt imaging to determine whether they are candidates for treatment with tissue plasminogen activator. Non-contrast CT can evaluate for hemorrhage that would exclude the patient from reperfusion therapy. Functional imaging can be used to select patients for thrombolytic therapy by measuring the mismatch between “infarct core” and “ischemic penumbra” which is a target for therapy. Contrast enhanced CT angiography (CTA) may follow the non-contrast CT imaging and may define ischemic areas of the brain with the potential to respond positively to reperfusion therapy.

CT scan and Meningitis – In suspected bacterial meningitis, contrast CT may be performed before lumbar puncture to show beginning meningeal enhancement. It may rule out causes for swelling. CT may be used to define the pathology of the base of the skull and that may require therapeutic intervention and surgical consultation. Some causes of the infection include fractures of the paranasal sinus and inner ear infection.

REDUCING RADIATION EXPOSURE:

Brain MRI is preferred to Brain CT in most circumstances where the patient can tolerate MRI and sufficient time is available to schedule the MRI examination. Assessment of subarachnoid hemorrhage, acute trauma or bone abnormalities of the calvarium (fracture, etc) may be better imaged with CT.

CT for Macrocephaly Consider ultrasound for child <6 months of age for macrocephaly.

REFERENCES

CPT Codes: 70480, 70481, 70482

Computed tomography’s use of thin sections with multi-planar scanning, (e.g., axial, coronal and sagittal planes) along with its three-dimensional reconstruction permits thorough diagnosis and management of ocular and orbital disorders. Brain CT is often ordered along with CT of the orbit especially for head injury with orbital trauma.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ORBIT CT:

- For assessment of proptosis (exophthalmos).
- For evaluation of progressive vision loss.
- For evaluation of decreased range of motion of the eyes.
- For screening and evaluation of ocular tumor, especially melanoma.
- For screening and assessment of suspected hyperthyroidism (such as Graves’ disease).
- For assessment of trauma.
- For screening and assessment of known or suspected optic neuritis if MRI is contraindicated or is unable to be performed.
- For evaluation of unilateral visual deficit.
- For screening and evaluation of suspected orbital Pseudotumor.
- Papilledema
- Orbital infection

COMBINATION OF STUDIES WITH ORBIT CT:

- **Brain CT/Orbit CT** –
 - For approved indications as noted above and being performed in a child under 3 years of age who will need anesthesia for the procedure and there is a suspicion of concurrent intracranial tumor (e.g. “trilateral retinoblastoma”)
 - Unilateral papilledema: to distinguish a compressive lesion on the optic nerve or optic disc swelling associated with acute demyelinating optic neuritis in multiple sclerosis from nonarteritic anterior ischemic optic neuropathy (NAION), central retinal vein occlusion or optic nerve infiltrative disorders.

ADDITIONAL INFORMATION RELATED TO ORBIT CT:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Proptosis or exophthalmos – Proptosis is a bulging of one or two of the eyes. Bulging of the eyes may be caused by hyperthyroidism (Graves' disease) or it may be caused by orbital tumors, cancer, infection, inflammation and arteriovenous malformations. The extent of proptosis, the abnormal bulging of one or two eyes, can be assessed by using a mid-orbital axial scan.
Orbital Pseudotumor – Pseudotumor may appear as a well-defined mass or it may mimic a malignancy. A sclerosing orbital Pseudotumor can mimic a lacrimal gland tumor.

Grave’s Disease – Enlargement of extraocular muscles and exophthalmos are features of Grave’s disease. CT may show unilateral or bilateral involvement of single or multiple muscles. It will show fusiform muscle enlargement with smooth muscle borders, especially posteriorly and pre-septal edema may be evident. Quantitative CT imaging of the orbit evaluates the size and density values of extraocular muscles and the globe position and helps in detecting ophthalmopathy in Grave’s disease.

Orbital Trauma – CT is helpful in assessing trauma to the eye because it provides excellent visualization of soft tissues, bony structures and foreign bodies.

Ocular Tumor – In the early stages, a choroidal malignant melanoma appears as a localized thickening of sclero-veal layer. It may be seen as a well defined mass if it is more than 3 mm thick.

REFERENCES

CPT Codes: 70480, 70481, 70482

INTRODUCTION:

Temporal bone/mastoid computed tomography (CT) is a unique study performed for problems such as conductive hearing loss, chronic otitis media, mastoiditis, cholesteatoma, congenital hearing loss and cochlear implants. It is a modality of choice because it provides 3D positional information and offers contrast for different tissue types.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR TEMPORAL BONE, MASTOID CT:

- For evaluation of conductive hearing loss.
- For evaluation of chronic otitis media, ear infections or drainage.
- For evaluation of mastoiditis.
- For evaluation of cholesteatoma.
- For evaluation of congenital hearing loss or deformity.
- For evaluation of dehiscence of the jugular bulb or carotid canal.
- For evaluation of aberrant blood vessels or malformations.
- For evaluation of cochlear implants.

ADDITIONAL INFORMATION RELATED TO TEMPORAL BONE, MASTOID CT:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Internal Auditory Canal (IAC) – The Internal Auditory Canal is the bony channel within the temporal bone that carries the VIIth and VIIIth cranial nerves (and blood vessels) from the inner ear to the brain stem. The IAC is approximately 1 cm in length. An acoustic neuroma is a benign tumor that arises from the nerve sheath and may cause sensorineural hearing loss, vertigo, or facial nerve weakness as it enlarges. Tumors or lipomas within the IAC have been reported.

Conductive Hearing Loss – Conductive hearing loss may be caused by fluid in the middle ear resulting from otitis media or from eustachian tube obstruction. CT scans may demonstrate underlying problems due to its aid in visualization of the middle ear space and the mastoid.

Chronic Otitis – When the eustachian tube is blocked for long periods of time, the middle ear may become infected with bacteria. The infection sometimes spreads into the mastoid bone behind the ear. Chronic otitis may be due to chronic mucosal disease or cholesteatoma and it may cause permanent damage to the ear. CT scans of the mastoids may show spreading of the infection beyond the middle ear.

Mastoiditis – CT is an effective diagnostic tool in determining the type of therapy for mastoiditis, a complication of acute otitis media leading to infection in the mastoid process.
Cholesteatoma – A cholesteatoma is a cyst-like mass occurring most commonly in the middle ear and mastoid region. CT scanning may help to determine the extent of the disease process. It can determine the extent of cholesteatoma by showing the combination of a soft tissue mass and bone erosion.

Congenital Hearing Loss - Genetic factors and factors present either in utero or at time of birth may cause congenital hearing loss in children. High-resolution CT provides the examination of choice furnishing anatomic detail for planning a surgical approach.

Cochlear Implants – Cochlear implants provide an opportunity to restore partial hearing. The electronic device, surgically implanted, converts sound to an electrical signal. CT allows the visualization of cochlear anatomy and provides 3D positional information. CT also offers contrast for different tissue types and may be used even when the implant is in place.

REFERENCES:

INTRODUCTION:
The sella turcica is a saddle-shaped depression in the sphenoid bone at the base of the human skull which holds the pituitary gland.

Computed tomography (CT) is useful in the delineation of the osseous margins of the sella. It is particularly helpful in evaluating the bony changes related to pathologic processes. The most frequent finding is a change in the size of the sella turcica such as an enlargement unaccompanied by bone erosion. The most common causes are the presence of interstellar adenomas and empty sella syndrome. The shape of the sella may also be affected by pathological conditions, such as Down syndrome, Williams’ syndrome, Sickle syndrome, and lumbosacral myelomeningocele.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR SELLA CT:
- For assessment of proptosis (exophthalmos).
- For evaluation of progressive vision loss/visual field deficit.
- For evaluation of decreased range of motion of the eyes.
- For screening and evaluation of ocular tumor, pituitary adenoma and parasellar bony structures for the evaluation of certain sellar tumors.
- For screening and assessment of known or suspected optic neuritis if MRI is contraindicated or is unable to be performed.
- For screening and evaluation of suspected orbital Pseudotumor.

ADDITIONAL INFORMATION RELATED TO SELLA CT:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Proptosis or exophthalmos – Proptosis is a bulging of one or two of the eyes. Bulging of the eyes may be caused by hyperthyroidism (Graves’ disease) or it may be caused by orbital tumors, cancer, infection, inflammation and arteriovenous malformations. The extent of proptosis, the abnormal bulging of one or two eyes, can be assessed by using a mid-orbital axial scan.

Orbital Pseudotumor – Pseudotumor may appear as a well-defined mass or it may mimic a malignancy. A sclerosing orbital Pseudotumor can mimic a lacrimal gland tumor.

Grave’s Disease – Enlargement of extraocular muscles and exophthalmos are features of Grave’s disease. CT may show unilateral or bilateral involvement of single or multiple muscles. It will show fusiform muscle enlargement with smooth muscle borders, especially posteriorly and pre-septal edema may be evident. Quantitative CT imaging of the orbit evaluates the size and density values of extraocular muscles and the globe position and helps in detecting ophthalmopathy in Grave’s disease.
Orbital Trauma – CT is helpful in assessing trauma to the eye because it provides excellent visualization of soft tissues, bony structures and foreign bodies.

Ocular Tumor – In the early stages, a choroidal malignant melanoma appears as a localized thickening of the sclero-uveal layer. It may be seen as a well defined mass if it is more than 3 mm thick.

REFERENCES:

INTRODUCTION:
Computed tomography (CT) primarily provides information about bony structures, but may also be useful in evaluating some soft tissue masses. It helps document the extent of facial bone fractures secondary to facial abscesses and diagnosing parotid stones. Additionally, CT may be useful in identifying tumor invasion into surrounding bony structures of the face and may be used in the assessment of chronic osteomyelitis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR FACE CT:
- For the evaluation of sinonasal or facial tumor.
- For the assessment of osteomyelitis.
- For the diagnosis of parotid stones.
- For the assessment of trauma, (e.g. suspected facial bone fractures).
- For the diagnosis of facial abscesses.

ADDITIONAL INFORMATION RELATED TO FACE CT:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Facial Bone Fractures – Computed tomography (CT) of the facial bones following trauma provides high quality images of fracture sites and adjacent soft tissue injury. It is helpful in planning surgical intervention, if needed.

Sinonasal and facial tumors - Computed tomography (CT) of the face produces images depicting a patient’s paranasal sinus cavities, hollow and air-filled spaces located within the bones of the face and surrounding the nasal cavity. Face CT of this system of air channels connecting the nose with the back of the throat may be used to evaluate suspected nasopharyngeal tumors. Face CT may detect other tumors and usually provide information about the tumor invasion into surrounding bony structures.

Chronic Osteomyelitis – CT may be used in patients with chronic osteomyelitis to evaluate bone involvement and to identify soft tissue involvement (cellulitis, abscess and sinus tracts). It is used to detect intramedullary and soft tissue gas, sequestra, sinus tracts, and foreign bodies but is not sufficient for the assessment of the activity of the process.

Parotid Stones – The sensitivity of CT to minimal amounts of calcific salts makes it well suited for the imaging of small, semicalcified parotid stones. Early diagnosis and intervention are important because patients with parotid stones eventually develop sialadenitis. With early intervention, it may be possible to
avoid further gland degeneration and parotidectomy. The CT scan identifies the exact location of a parotid stone expediting intraoral surgical removal.

REFERENCES:

INTRODUCTION:
CT scans can provide much more detailed information about the anatomy and abnormalities of the paranasal sinuses than plain films. A CT scan provides greater definition of the sinuses and is more sensitive than plain radiography for detecting sinus pathology, especially within the sphenoid and ethmoid sinuses. CT scan findings can also be quite nonspecific, however, and should not be used routinely in the diagnosis of acute sinusitis. The primary role of CT scans is to aid in the diagnosis and management of recurrent and chronic sinusitis, or to define the anatomy of the sinuses prior to surgery.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR SINUS & MAXILLOFACIAL AREA CT:

For evaluation of known or suspected infections or inflammatory disease:
- Unresolved sinusitis after four (4) consecutive weeks of medication, e.g., antibiotics, steroids or anti-histamines.
- Immunocompromised patient (including but not limited to AIDS, transplant patient or patient with genetic or acquired deficiencies) or conditions predisposed to sinusitis (e.g., cystic fibrosis and immotile cilia syndrome).
- Osteomyelitis of facial bone where imaging study, (such as plain films, or brain MRI, etc.) demonstrates an abnormality or is indeterminate.

For evaluation of known or suspected tumor:
- For known or suspected tumor with bony abnormality or opaque sinuses seen on imaging or for mucocele (unusual benign tumor).

For evaluation of trauma:
- Suspected fracture AND prior imaging was nondiagnostic or equivocal.
- For follow-up trauma with fracture or opaque sinuses visualized on x-ray.

Pre-operative evaluation:
- Planned maxillo-facial surgery.
- For use as adjunct to image guided sinus exploration or surgery.

Post-operative evaluation:
- Complications, e.g., suspected CSF leak, post-operative bleeding as evidenced by persistent opaqueness on imaging.
- Non-improvement two (2) or more weeks after surgery.

Other indications for Sinus CT:
- For poorly controlled asthma associated with upper respiratory tract infection. May be performed without failing 4 consecutive weeks of treatment with medication.
• For presence of polyposis on imaging or direct visualization that may be causing significant airway obstruction.
• For deviated nasal septum or structural abnormality seen on imaging or direct visualization that may be causing significant airway obstruction.
• For new onset of anosmia (lack of sense of smell) or significant hyposmia (diminished sense of smell).
• Other conditions such as Granulomatosis with polyangiitis (Wegener’s) may present as rhinosinusitis.
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

COMBINATION OF STUDIES WITH SINUS CT:

Sinus CT/Chest CT –
• For poorly controlled asthma associated with upper respiratory tract infection. May be performed without failing 4 consecutive weeks of treatment with medication.
• Granulomatosis with polyangiitis (Wegener’s) disease (GPA).

ADDITIONAL INFORMATION RELATED TO SINUS CT:

Sinusitis • In acute sinusitis, routine imaging is not recommended except for patients with suspected complications (especially in the brain and in the orbit). In addition to CT scanning, magnetic resonance (MR) imaging of the sinuses, orbits, and brain should be performed whenever extensive or multiple complications of sinusitis are suspected. In chronic sinusitis, CT scanning is the gold standard for the diagnosis and the management, because it also provides an anatomic road map, when surgery is required.

Allergic rhinitis • Allergic rhinitis is rhinitis caused by allergens, which are substances that trigger an allergic response. Allergens involved in allergic rhinitis come from either outdoor or indoor substances. Outdoor allergens such as pollen or mold spores are usually the cause of seasonal allergic rhinitis (also called hay fever). Indoor allergens such as animal dander or dust mites are common causes of year-round allergic rhinitis.

Multiple polyps • These are soft tissues that develop off stalk-like structures on the mucus membrane. They impede mucus drainage and restrict airflow. Polyps usually develop from sinus infections that cause overgrowth of the mucus membrane in the nose. They do not regress on their own and may multiply and cause considerable obstruction.

Deviated Septum • A common structural abnormality of the nose that causes problems with air flow is a deviated septum. The septum is the inner wall of cartilage and bone that separates the two sides of the nose. When deviated, it is not straight but shifted to one side, usually the left.

A coronal CT image is the preferred initial procedure. Bone window views provide excellent resolution and a good definition of the complete osteomeatal complex and other anatomic details that play a role in sinusitis. The coronal view also correlates best with findings from sinus surgery. Approximately 30% of patients cannot lie in the needed position for coronal views and so axial views would be taken (and “reconstructed” afterwards).

CT instead of MRI – MRI allows better differentiation of soft tissue structures within the sinuses. It is used occasionally in cases of suspected tumors or fungal sinusitis. Otherwise, MRI has no advantages over CT scanning in the evaluation of sinusitis. Disadvantages of MRI include high false-positive
findings, poor bony imaging, and higher cost. MRI scans take considerably longer to accomplish than CT scans and may be difficult to obtain in patients who are claustrophobic.

REFERENCES:

INTRODUCTION:

High resolution CT can visualize both normal and pathologic anatomy of the neck. It is used in the evaluation of neck soft tissue masses, abscesses, and lymphadenopathy. For neck tumors, it defines the extent of the primary tumor and identifies lymph node spread. CT provides details about the larynx and cervical trachea and its pathology. Additional information regarding airway pathology is provided by two and three-dimensional images generated by CT. It can also accurately depict and characterize tracheal stenoses.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR NECK CT:

For evaluation of known tumor, cancer or mass:
- Evaluation of neck tumor, mass or history of cancer with suspected recurrence or metastasis [based on symptoms or examination findings (may include new or changing lymph nodes)].
- Evaluation of skull base tumor, mass or cancer.
- Evaluation of tumors of the tongue, larynx, nasopharynx, pharynx, or salivary glands.
- Evaluation of parathyroid tumor when:
 - CA> normal and PTH > normal WITH
 - Previous nondiagnostic ultrasound or nuclear medicine scan AND
 - Surgery planned.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of suspected tumor, cancer or mass:
- Evaluation of neck tumor, mass or cancer with suspected recurrence or metastasis [based on symptoms or examination findings (may include new or changing lymph nodes)].
- Evaluation of palpable lesions in mouth or throat.
- Evaluation of non-thyroid masses in the neck when present greater than one month, noted to be ≥1 cm or associated with generalized lymphadenopathy.

For evaluation of known or suspected inflammatory disease or infections:
- For evaluation of abscesses of the pharynx and neck.
- Evaluation of lymphadenopathy in the neck when present greater than one month, noted to be ≥1 cm or associated with generalized lymphadenopathy.

Pre-operative evaluation.
Post-operative/procedural evaluation (e.g. post neck dissection):

- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for a Neck CT:

- For evaluation of vocal cord lesions or vocal cord paralysis.
- For evaluation of stones of the parotid and submandibular glands and ducts.
- For evaluation of tracheal stenosis.

Indications for combination studies:

- Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

ADDITIONAL INFORMATION RELATED TO NECK CT:

CT and Tumors of the Neck (non-thyroid) – CT is a standard modality for imaging neck tumors. Pre-treatment imaging is important in the management of neck cancer. CT assists in pre-treatment planning by defining the extent of the primary tumor; the peripheral borders of the neoplasm must be determined as accurately as possible. In neck cancer, the identification of lymphatic tumor spread is crucial. Multislice-spiral CT improves the assessment of tumor spread and lymph node metastases and defines the critical relationship of tumor and lymph node metastasis. CT is also used in the follow-up after surgical, radiation or combined treatment for a neck neoplasm.

CT and Tumoral and Non-Tumoral Trachea Stenoses – Bronchoscopy is the “gold standard” for detecting and diagnosing tracheobronchial pathology because it can directly visualize the airway lumen, but it may be contraindicated in patients with some conditions, e.g., hypoxemia, tachycardia. Spiral CT provides a non-invasive evaluation of the trachea and may be used in most patients to assess airway patency distal to stenoses.

CT and Parotid and Submandibular Gland and Duct Stones – The sensitivity of CT to minimal amounts of calcific salts makes it well suited for the imaging of small, semi calcified parotid or submandibular gland stones. Early diagnosis and intervention are important because patients with salivary gland stones may eventually develop sialadenitis. With early intervention, it may be possible to avoid further gland degeneration requiring parotid or submandibular gland excision. The CT scan identifies the exact location of a ductal stone expediting intraoral surgical removal.

REFERENCES

INTRODUCTION:

Computed tomography angiography (CTA) is recognized as a valuable diagnostic tool for the management of patients with cerebrovascular disease. With its three-dimensional reconstructions, CTA can simultaneously demonstrate the bony skull base and its related vasculature. CTA use of ionizing radiation and an iodine-based intravascular contrast medium is a disadvantage when compared to magnetic resonance angiography (MRA) but it is quicker and requires less patient cooperation than MRA. CTA is much less invasive than catheter angiography which involves injecting contrast material into an artery.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR BRAIN CTA:

For evaluation of known intracranial vascular disease:

- To evaluate known intracranial aneurysm or arteriovenous malformation (AVM).
- To evaluate known verteobasilar insufficiency (VBI).
- To re-evaluate vascular abnormality visualized on previous brain imaging.
- For evaluation of known vasculitis.

For evaluation of suspected intracranial vascular disease:

- To screen for suspected intracranial aneurysm in patient whose parent, brother, sister or child has history of intracranial aneurysm. Note: If there is a first degree familial history, repeat study is recommended every 5 years.
- Screening for aneurysm in polycystic kidney disease, Ehlers-Danlos syndrome, fibromuscular dysplasia, neurofibromatosis, or known aortic coarctation.
- To evaluate previously diagnosed subarachnoid hemorrhage (SAH).
- To evaluate suspected verteobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- To evaluate suspected arteriovenous malformation (AVM) in patient with previous or indeterminate imaging study.
- For evaluation of suspected venous thrombosis (dural sinus thrombosis).
- Distinguishing benign intracranial hypertension (pseudotumor cerebri) from dural sinus thrombosis.
- For evaluation of pulsatile tinnitus for vascular etiology.
- For evaluation of suspected vasculitis with abnormal lab results suggesting acute inflammation or autoimmune antibodies.

Pre-operative evaluation for brain/skull surgery.

Post-operative/procedural evaluation:

- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indications for Brain CTA/Neck CTA combination studies:
• For evaluation of patients who have had a stroke or transient ischemic attack (TIA) within the past 2 weeks.
• For evaluation of known or suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
• For evaluation of known or suspected carotid or cerebral artery occlusion in patients with a sudden onset of one-sided weakness, abnormal speech, vision defects or severe dizziness.
• For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.
• For evaluation of pulsatile tinnitus for vascular etiology.

ADDITIONAL INFORMATION RELATED TO BRAIN CTA:

CTA for Evaluation of Aneurysm – CTA is useful in the detection of cerebral aneurysms. The sensitivity of CTA to detect cerebral aneurysms ≤ 5 mm is higher than that with digital subtraction angiography (DSA). Most aneurysms missed with CTA are ≤ 3 mm. Aneurysms in the region of the anterior clinoid process may extend into the subarachnoid space where they carry the threat of hemorrhage. CTA can help delineate the borders of the aneurysm in relation to the subarachnoid space and may help detect acute ruptured aneurysms. It may be used in the selection of patients for surgical or endovascular treatment of ruptured intracranial aneurysms.

CTA for Screening of Patients with first degree relative (parent, brother, sister or child) have a history of aneurysm – Data has suggested that individuals with a parent, brother, sister or child harboring an intracranial aneurysm are at increased risk of aneurysms. It is likely that multiple genetic and environmental risk factors contribute to the increased risk.

CTA for Evaluation of Vertebrobasilar Insufficiency (VBI) – Multidetector CT angiography (MDCTA) may be used in the evaluation of vertebral artery pathologies. The correlation between MDCTA and color Doppler sonography is moderate. CTA is used for minimally invasive follow-up after intracranial stenting for VBI. It enables visualization of the patency of the stent lumen and provides additional information about all brain arteries and the brain parenchyma.

CTA for evaluation of Arteriovenous Malformation (AVM) – A good correlation has been found between catheter angiography and CTA in the detection of arteriovenous malformations. CTA allows calculation of the volume of an AVM nidus and identifies and quantifies embolic material within it. CTA may be used for characterization and stereotactic localization before surgical resection or radiosurgical treatment of arteriovenous malformations.

REFERENCES

CPT Code: 70498

INTRODUCTION

Neck computed tomography angiography (CTA) uses a computerized analysis of x-ray images enhanced by contrast material injected into a peripheral vein. Neck CTA may be performed after initial carotid duplex imaging that does not provide adequate information or shows abnormal results. Neck CTA may be used for the evaluation of carotid body tumors and for post-operative evaluation of carotid endarterectomy.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR NECK CTA:

For evaluation of vascular disease:
- For evaluation of patients with an abnormal ultrasound of the neck or carotid duplex imaging (e.g. carotid stenosis ≥ 60%, technically limited study, aberrant direction of flow in the carotid or vertebral arteries).
- For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.

For evaluation of known or suspected tumor/mass:
- For evaluation of carotid body tumors, also called paragangliomas.
- For evaluation of pulsatile neck mass.

Pre-operative evaluation.

Post-operative/procedural evaluation (e.g. carotid endarterectomy):
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indications for combination studies:

Neck CTA/Brain CTA:
- For evaluation of patients who have had a stroke or transient ischemic attack (TIA) within the past 2 weeks.
- For evaluation of known or suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- For evaluation of known or suspected carotid or cerebral artery occlusion in patients with a sudden onset of one-sided weakness, abnormal speech, vision defects or severe dizziness.
- For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.
- For evaluation of pulsatile tinnitus for vascular etiology.
Neck CTA/Brain CT:
• Confirmed carotid stenosis of >60%, surgery or angioplasty candidate.

ADDITIONAL INFORMATION RELATED TO NECK CTA:

CTA and Carotid Body Tumor – Carotid body tumors are found in the upper neck at the branching of the carotid artery. Although most of them are benign they may be locally aggressive with a small malignant potential. Computed tomography angiography of carotid arteries may be performed using a multislice spiral CT scanner. The 3D volume-rendering reconstructions provide a selective visualization of the anatomic relationships among carotid body tumors, vessels, and surrounding osseous structures with good detail.

Post-operative evaluation of carotid endarterectomy – Carotid endarterectomy is a vascular surgical procedure that removes plaque from the carotid artery. CTA, with multiprojection volume reconstruction, is a non-invasive imaging modality that is an alternative to postoperative angiography following carotid endarterectomy. It allows the surgeon to get informative and comparative data.

The Asymptomatic Carotid Atherosclerosis Study (ACAS): The ACAS clinical trial is an often quoted study that demonstrated a 5-year reduction in stroke risk of asymptomatic patients with ≥ 60% carotid diameter reduction that underwent carotid endarterectomy compared to those who received medical treatment.

REFERENCES

CPT Codes: 70540, 70542, 70543

INTRODUCTION:
Magnetic resonance imaging (MRI) is a noninvasive and radiation free radiologic technique used in the diagnosis and management of ocular and orbital disorders. Common uses include the evaluation of suspected optic nerve involvement in patients suspected of having multiple sclerosis and assessment of tumor invasion of the orbit. MRI is used in the evaluation of hyperthyroid related exophthalmos as well as in identifying the structural causes of unilateral proptosis. It is a sensitive method for showing soft tissue abnormalities which makes it a useful technique in evaluating orbital disorders, e.g., orbital pseudotumor.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ORBIT MRI:
- For assessment of proptosis (exophthalmos).
- For evaluation of progressive vision loss.
- For evaluation of decreased range of motion of the eyes.
- For screening and evaluation of ocular tumor, especially melanoma.
- For screening and assessment of suspected hyperthyroidism (such as Graves’ disease).
- For assessment of trauma.
- For screening and assessment of known or suspected optic neuritis.
- For evaluation of unilateral visual deficit.
- Papilledema
- Orbital infection

COMBINATION OF STUDIES WITH ORBIT MRI:
- Brain MRI/Orbit MRI –
 - For approved indications as noted above and being performed in a child under 3 years of age who will need anesthesia for the procedure and there is a suspicion of concurrent intracranial tumor (e.g. “trilateral retinoblastoma”)
 - Unilateral papilledema: to distinguish a compressive lesion on the optic nerve or optic disc swelling associated with acute demyelinating optic neuritis in multiple sclerosis from nonarteritic anterior ischemic optic neuropathy (AION), central retinal vein occlusion or optic nerve infiltrative disorders.

ADDITIONAL INFORMATION RELATED TO ORBIT MRI:
Request for a follow-up study: A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRI and Optic Neuritis – MRI is useful in the evaluation of patients who have signs and symptoms of optic neuritis. These signs and symptoms may be the first indications of demyelinating disease, e.g., multiple sclerosis (MS). MRI findings showing the presence of three or more bright spots in brain white matter on T₂-weighted images are indicative of MS and may be used as a criterion for initiating treatment.

MRI and Exophthalmos (Proptosis) – Proptosis is characterized by a bulging of one or two eyes and may be caused by hyperthyroidism (Grave's disease) or it may be caused by other conditions, e.g., orbital tumors, infection and inflammation. The degree of exophthalmos in thyroid-associated ophthalmopathy is related to the orbital fatty tissue volume. MRI is able to define orbital soft tissues and measure the volumetric change in orbital fatty tissues.

MRI and Orbit Tumors – The most common intraocular malignant tumor is choroidal melanoma. Most choroidal melanomas can be evaluated by ophthalmoscopy and ultrasonography. MRI may be used to differentiate the types of mass lesions and to define their extent.

Retinoblastoma and intracranial tumors: Histologically similar tumors may occur in the pineal, suprasellar or parasellar regions of patients with ocular retinoblastoma, also known as “trilateral retinoblastoma”. The incidence of these intracranial tumors in either unilateral or bilateral retinoblastoma patients is 1.5%-5 %.

Unilateral papilledema: The most common causes of unilateral optic disc edema are nonarteritic anterior ischemic optic neuropathy (AION), optic neuritis (termed papillitis when disc swelling is present), and orbital compressive lesions. Idiopathic intracranial hypertension (pseudotumor cerebri) and central retinal vein occlusive lesions can also present with unilateral papilledema.

Nonarteritic anterior ischemic optic neuropathy (NAION): Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common form of ischemic optic neuropathy. It is an idiopathic, ischemic insult of the optic nerve head characterized by acute, monocular, painless visual loss with optic disc swelling. The pathophysiology for reduction in blood flow to the optic nerve is controversial.

REFERENCES

INTRODUCTION:
Magnetic resonance imaging (MRI) is useful in the evaluation of the soft tissues of the face, facial tumors, and osteomyelitis. It is indicated for evaluating soft-tissue within the sinuses and is sensitive for differentiating between inflammatory disease and malignant tumors.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR FACE MRI:
- For evaluation of sinonasal and/or facial soft tissue masses or tumors.
- For evaluation of osteomyelitis.
- For evaluation of parotid tumors.

ADDITIONAL INFORMATION RELATED TO FACE MRI:

Request for a follow-up study: A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

MRI and Sinonasal Tumors – Sinus tumors are rare, but the prognosis is often poor due to advanced disease at diagnosis. MRI can distinguish between tumor and retained secretions or inflammatory sinus disease. Squamous cell carcinoma is the most common malignant tumor of the sinonasal cavity. On MRI these tumors are hypointense on T2W images and heterogeneous with solid enhancement, unlike the uniform appearance of secretions.

MRI and Chronic Osteomyelitis – MRI may be used in patient with chronic osteomyelitis to identify soft tissue involvement. It may demonstrate edema in soft tissues beyond the usual sites of enhancement and the full extent of soft tissue mass.

REFERENCES
CPT Codes: 70540, 70542, 70543

INTRODUCTION:

Magnetic resonance imaging (MRI) is used in the evaluation of head and neck region tumors. The soft-tissue contrast among normal and abnormal tissues provided by MRI permits the exact delineation of tumor margins in regions, e.g., the nasopharynx, oropharynx, and skull base regions. MRI is used for therapy planning and follow-up of head and neck neoplasms. It is also used for the evaluation of neck lymphadenopathy, tracheal stenosis, and vocal cord lesions.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR NECK MRI:

For evaluation of known tumor, cancer or mass:
- Evaluation of neck tumor, mass or cancer for patient with history of cancer with suspected recurrence or metastasis [based on symptoms or examination findings (may include new or changing lymph nodes)].
- Evaluation of skull base tumor, mass or cancer.
- Evaluation of tumors of the tongue, larynx, nasopharynx pharynx, or salivary glands.
- Evaluation of parathyroid tumor when:
 - CA> normal and PTH > normal WITH
 - Previous nondiagnostic ultrasound or nuclear medicine scan AND
 - Surgery planned.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of suspected tumor, cancer or mass:
- Evaluation of neck tumor, mass or with suspected recurrence or metastasis [based on symptoms or examination findings (may include new or changing lymph nodes)].
- Evaluation of palpable lesions in mouth or throat.
- Evaluation of non-thyroid masses in the neck when persistent, greater than one month, and >/= to 1 cm or associated with generalized lymphadenopathy.

For evaluation of known or suspected inflammatory disease or infections:
- Evaluation of lymphadenopathy in the neck when greater than one month, and >/= to 1 cm or associated with generalized lymphadenopathy.

Pre-operative evaluation.

Post-operative/procedural evaluation (e.g. post neck dissection/exploration):
A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for a Neck MRI:
- For evaluation of vocal cord lesions or vocal cord paralysis.
- For evaluation of stones of the parotid and submandibular glands and ducts.
- Brachial plexus dysfunction (Brachial plexopathy/Thoracic Outlet Syndrome).

Indications for combination studies:
- Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

ADDITIONAL INFORMATION RELATED TO NECK MRI:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRI and Brachial Plexus – MRI is the only diagnostic tool that accurately provides high resolution imaging of the brachial plexus. The brachial plexus is formed by the cervical ventral rami of the lower cervical and upper thoracic nerves which arise from the cervical spinal cord, exit the bony confines of the cervical spine, and traverse along the soft tissues of the neck, upper chest, and course into the arms.

MRI and Neck Tumors – MRI plays a positive role in the therapeutic management of neck tumors, both benign and malignant. It is the method of choice for therapy planning as well as follow-up of neck tumors. For skull base tumors, CT is preferred but MRI provides valuable information to support diagnosis of the disease.

MRI and Vocal Cord Paralysis or Tumors – MRI helps in the discovery of tumors or in estimating the depth of invasion of a malignant process. It provides a visualization of pathological changes beneath the surface of the larynx. MRI scans may indicate the presence or absence of palsy and possible reasons for it. If one or both vocal cords show no movement during phonation, palsy may be assumed.

MRI and Cervical Lymphadenopathy – MRI can show a conglomerate nodal mass that was thought to be a solitary node. It can also help to visualize central nodal necrosis and identify nodes containing metastatic disease. Imaging of the neck is not done just to evaluate lymphadenopathy, but is performed to evaluate a swollen lymph node and an unknown primary tumor site. Sometimes it is necessary to require a second imaging study using another imaging modality, e.g., a CT study to provide additional information.

MRI and Submandibular Stones – Early diagnosis and intervention are important because patients with submandibular stones may eventually develop sialadenitis. MRI provides excellent image contrast and resolution of the submandibular gland and duct and helps in the evaluation of stones.
REFERENCES

CPT Codes: 70540, 70542, 70543

INTRODUCTION:
MRI of the sinus is useful for evaluating soft tissue involvement. It can help rule out fungal sinusitis and may differentiate between inflammatory disease and malignant tumors. MRI may also identify encephaloceles or a cerebrospinal fluid (CSF) leak.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR SINUS MRI:
- Evidence of tumor from a physical exam, plain sinus x-ray or previous CT.
- Cerebrospinal Fluid (CSF) leak.
- Unresolved sinusitis after four (4) consecutive weeks of medication, e.g., antibiotics, steroids or antihistamines.
- Osteomyelitis (rare) of the facial bone.

ADDITIONAL INFORMATION RELATED TO SINUS MRI:

Request for a follow-up study · A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging · Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

Sinusitis · In addition to CT scanning, magnetic resonance (MR) imaging of the sinuses, orbits, and brain should be performed whenever extensive or multiple complications of sinusitis are suspected.

Limitations of sinus MRI · MRI has limitations in the definition of the bony anatomy, but is sensitive for differentiating between inflammatory disease and malignant tumors.

REFERENCES

CPT Codes: 70544, 70545, 70546

INTRODUCTION:
Magnetic resonance angiography (MRA) or magnetic resonance venography (MRV) can be used as a first line investigation of intracranial vascular disease. It is an alternative to invasive intra-catheter angiography that was once the mainstay for the investigation of intracranial vascular disease. MRA/MRV may use a contrast agent, gadolinium, which is non-iodine-based, for better visualization. It can be used in patients who have history of contrast allergy and who are at high risk of kidney failure. A single authorization covers both MRA and MRV.

Three different techniques of MRA/MRV are: time of flight (both 2D and 3D TOF), phase contrast (PC), and contrasted enhanced angiography. Time of flight MRA takes advantage of the phenomena of flow related enhancement and is the preferred MRA technique due to the speed at which the exam can be acquired.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR BRAIN (HEAD) MRA/MRV:

For evaluation of known intracranial vascular disease:
- To evaluate known intracranial aneurysm or arteriovenous malformation (AVM).
- To evaluate known vertebrobasilar insufficiency (VBI).
- To re-evaluate vascular abnormality visualized on previous brain imaging.
- For evaluation of known vasculitis.

For evaluation of suspected intracranial vascular disease:
- To screen for suspected intracranial aneurysm in patient whose parent brother, sister or child has history of intracranial aneurysm. Note: If there is a first degree familial history, repeat study is recommended every 5 years.
- Screening for aneurysm in polycystic kidney disease, Ehlers-Danlos syndrome, fibromuscular dysplasia, neurofibromatosis, or known aortic coarctation.
- To evaluate previously diagnosed subarachnoid hemorrhage (SAH).
- To evaluate suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- To evaluate suspected arteriovenous malformation (AVM) in patient with previous or indeterminate imaging study.
- For evaluation of suspected venous thrombosis (dural sinus thrombosis).
- Distinguishing benign intracranial hypertension (pseudotumor cerebri) from dural sinus thrombosis.
- For evaluation of pulsatile tinnitus for vascular etiology.
- For evaluation of suspected vasculitis with abnormal lab results suggesting acute inflammation or autoimmune antibodies.
- For evaluation of stroke risk in sickle cell patients (2 - 16 years of age) with a transcranial doppler velocity >200.
Pre-operative evaluation for brain/skull surgery.

Post-operative/procedural evaluation:
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indications for Brain MRA/Neck MRA combination studies:
- For evaluation of patients who have had a stroke or transient ischemic attack (TIA) within the past 2 weeks.
- For evaluation of known or suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- For evaluation of known or suspected carotid or cerebral artery occlusion in patients with a sudden onset of one-sided weakness, abnormal speech, vision defects or severe dizziness.
- For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.
- For evaluation of pulsatile tinnitus for vascular etiology.

INFORMATION RELATED TO BRAIN (HEAD) MRA

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindications. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindications.

MRA and Cerebral Aneurysms – Studies that compared MRA with catheter angiography in detecting aneurysms found that MRA could find 77% - 94% of the aneurysms previously diagnosed by catheter angiography that were larger than 5 mm. For aneurysms smaller than 5 mm, MRI detected only 10% - 60% of those detected with catheter angiography. On the other hand, aneurysms that were missed by catheter angiography in patients with acute subarachnoid hemorrhage were detected with MRA due to the much larger number of projections available with MRA.

MRA and Cerebral Arteriovenous Malformations (AVM) – Brain arteriovenous malformation (AVM) may cause intracranial hemorrhage and is usually treated by surgery. 3D TOF-MRA is commonly used during the planning of radiotherapy to delineate the AVM nidus, but it is not highly specific for the detection of a small residual AVM after radiotherapy.

MRV - A pitfall of the TOF technique, particularly 3D TOF, is that in areas of slowly flowing blood, turbulence or blood which flows in the imaging plane there can be regions of absent or diminished signal. The signal loss can be confused with vascular occlusion or thrombi. To avoid this pitfall MRA performed after the intravenous administration of gadolinium based contrast agents is utilized at many facilities.

Intracranial magnetic resonance venography (MRV) is used primarily to evaluate the patency of the venous sinuses. The study can be performed with TOF, Phase contrast and IV contrast enhanced techniques. Delayed images to allow for enhancement of the venous system are required to obtain images when intravenous gadolinium enhanced studies are undertaken.

Saturation pulses are utilized in studies not undertaken with intravenous contrast to help eliminate flow related signal in a specified direction and thus display the desired arterial or venous structures on their own. In cranial applications, saturation pulses applied at the inferior margin of the imaging field.
eliminate signal from arterial flow in order to visualize the veins. Conversely, superior saturation pulses are used to eliminate venous flow related enhancement when evaluation of the arterial structures is desired.

REFERENCES

CPT Codes: 70547, 70548, 70549

INTRODUCTION:

Magnetic resonance angiography (MRA) of the neck uses magnetic resonance imaging (MRI) technology and may be performed after abnormal results are found on carotid duplex imaging. MRA is used for the evaluation and imaging of vessels in the head and the neck.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR NECK MRA:

For evaluation of vascular disease:
- For evaluation of patients with an abnormal ultrasound of the neck or carotid duplex imaging (e.g., carotid stenosis ≥ 60%, technically limited study, aberrant direction of flow in the carotid or vertebral arteries).
- For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.

For evaluation of known or suspected tumor/mass:
- For evaluation of carotid body tumors, also called paragangliomas.
- For evaluation of pulsatile neck mass.

Pre-operative evaluation.

Post-operative/procedural evaluation (e.g. carotid endarterectomy):
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indications for combination studies:

Neck MRA/Brain MRA:
- For evaluation of patients who have had a stroke or transient ischemic attack (TIA) within the past 2 weeks.
- For evaluation of known or suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- For evaluation of known or suspected carotid or cerebral artery occlusion in patients with a sudden onset of one-sided weakness, abnormal speech, vision defects or severe dizziness.
- For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.
- For evaluation of pulsatile tinnitus for vascular etiology.

Neck MRA/Brain MRI:
- Confirmed carotid stenosis >60%, surgery or angioplasty candidate.
ADDITIONAL INFORMATION RELATED TO NECK MRA:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRA and Carotid Body Tumor – Carotid body tumors are found in the upper neck at the branching of the carotid artery. Although most of them are benign they may be locally aggressive with a small malignant potential. MRA may be used to identify a carotid body tumor due to its ability to define the extension of the tumor in relation to the carotid arteries, involvement of the base of the skull and bilateral tumors.

Post-operative evaluation of carotid endarterectomy – Carotid endarterectomy is a vascular surgical procedure that removes plaque from the carotid artery. MRA with multiprojection volume reconstruction is a non-invasive imaging modality that is an alternative to postoperative angiography following carotid endarterectomy. It allows the surgeon to get informative and comparative data.

The Asymptomatic Carotid Atherosclerosis Study (ACAS): The ACAS clinical trial is an often quoted study that demonstrated a 5-year reduction in stroke risk of asymptomatic patients with ≥ 60% carotid diameter reduction that underwent carotid endarterectomy compared to those who received medical treatment.

REFERENCES

INTRODUCTION:

Brain (head) MRI is the procedure of choice for most brain disorders. It provides clear images of the brainstem and posterior brain, which are difficult to view on a CT scan. It is also useful for the diagnosis of demyelinating disorders (disorders such as multiple sclerosis (MS) that cause destruction of the myelin sheath of the nerve). The evaluation of blood flow and the flow of cerebrospinal fluid (CSF) is possible with this non-invasive procedure.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR BRAIN MRI:

For evaluation of suspected multiple sclerosis (MS):
- For evaluation of patient with neurologic symptoms or deficits within the last four (4) weeks.

For evaluation of known multiple sclerosis (MS):
- Stable condition with no prior imaging within the past ten (10) months.
- Exacerbation of symptoms or change in symptom characteristics such as frequency or type and demonstrated compliance with medical therapy.

For evaluation of known or suspected seizure disorder:
- New onset of a seizure.
- Medically refractory epilepsy.

For evaluation of suspected Parkinson's disease:
- For evaluation of suspected Parkinson's disease as a baseline study.

For evaluation of known Parkinson's disease:
- For evaluation of new non-Parkinson symptoms complicating the evaluation of the current condition.

For evaluation of neurologic symptoms or deficits:
- Acute, new or fluctuating neurologic symptoms or deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes.

For evaluation of cognitive assessment:
- Change in mental status with a mental status score of either MMSE or MoCA of less than 26 or other similar mental status exams showing at least mild cognitive impairment AND a completed basic metabolic workup (such as thyroid function testing, liver function testing, complete blood count, electrolytes, and B12).
For evaluation of known or suspected trauma:
- Known or suspected trauma or injury to the head with documentation of one or more of the following acute, new or fluctuating:
 - Focal neurologic findings
 - Motor changes
 - Mental status changes
 - Amnesia
 - Vomiting
 - Seizures
 - Headache
 - Signs of increased intracranial pressure
- Known coagulopathy
- Known or suspected skull fracture by physical exam and positive x-ray.

For evaluation of headache:
- Chronic headache with a change in character/pattern (e.g., more frequent, increased severity or duration).
- New onset (< 48 hours) of “worst headache in my life” or “thunderclap” headache. Note: The duration of a thunderclap type headache lasts more than 5 minutes. Sudden onset new headache reaching maximum intensity within 2-3 minutes.
- New onset of headache with any acute, new or fluctuating neurologic deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes.
- Patient with history of cancer, or significantly immunocompromised, with new onset headache.
- New headache in occipitonal region in individual > 55 years old.
- New temporal headache in person > 55, with sedimentation rate (ESR) > 5 with tenderness over the temporal artery.
- Acute, sudden onset of headache with a family history (brother, sister, parent or child) of brain aneurysm or AVM (arteriovenous malformation).
- New severe unilateral headache with radiation to or from the neck. Associated with suspicion of carotid or vertebral artery dissection.
- New onset of headache in pregnancy.

For evaluation of known or suspected brain tumor, mass or metastasis:
- Known tumor and new onset of headache.
- Follow up for known tumor.
- Evaluation of suspected tumor with any acute, new or fluctuating neurologic symptoms or deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes.
- Known lung cancer, or rule out metastasis and/or preoperative evaluation.
- Evaluation of metastatic melanoma (not all melanomas).
- Known or suspected pituitary tumor with corroborating physical exam (galactorrhea) neurologic findings and/or lab abnormalities.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance: Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected stroke:
• To evaluate patient with history of a known stroke with new and sudden onset of severe headache.
• Known or suspected stroke with any acute, new or fluctuating symptoms or deficits such as sensory deficits, limb weakness, speech difficulties, lack of coordination or mental status changes or with a family history (brother, sister, parent or child) of aneurysm.
• Symptoms of transient ischemic attack (TIA) (episodic neurologic symptoms).

For evaluation of known or suspected inflammatory disease or infection (e.g., meningitis or abscess):
• Intracranial abscess or brain infection with acute altered mental status OR positive lab findings (such as elevated WBC’s) OR follow up assessment during or after treatment completed.
• Meningitis with positive physical findings (such as fever, stiff neck) and positive lab findings (such as elevated white blood cells or abnormal lumbar puncture fluid exam.)
• Suspected encephalitis with a severe headache, altered mental status OR positive lab finding, (such as elevated WBC’s).
• Endocarditis with suspected septic emboli.
• Evaluation for Central Nervous System (CNS) involvement in patients with known or suspected vasculitis or autoimmune disease with positive lab findings.

For evaluation of known or suspected congenital abnormality (such as hydrocephalus, craniosynostosis):
• Known or suspected congenital abnormality with any acute, new or fluctuating neurologic, motor or mental status changes.
• Evaluation of macrocephaly with child >6 months of age.
• Evaluation of microcephaly.
• Follow up shunt evaluation within six (6) months of placement or one (1) year follow up and/or with neurologic symptoms.
• Evaluation of craniosynostosis and other head deformities
• To evaluate patient for suspected or known hydrocephalus.
• To evaluate patient for prior treatment OR treatment planned for congenital abnormality.

Suspected normal pressure hydrocephalus, (NPH) with symptoms.

Pre-operative evaluation for brain/skull surgery:

Post-operative/procedural evaluation:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indications for a Brain MRI with Internal Auditory Canal (IAC):
• Unilateral non-pulsatile tinnitus.
• Pulsatile tinnitus.
• Suspected acoustic neuroma (Schwannoma) or cerebellar pontine angle tumor with any of the following signs and symptoms: unilateral hearing loss by audiometry, headache, disturbed balance or gait, unilateral tinnitus, facial weakness, or altered sense of taste.
• Suspected cholesteatoma.
• Suspected glomus tumor.
• Asymmetric sensorineural hearing loss on audiogram.

Other indications for a Brain MRI:
• Evaluation of suspected acute subarachnoid hemorrhage (SAH).
Follow up for known hemorrhage, hematoma or vascular abnormalities,
Developmental delay,
Vertigo associated with headache, blurred or double vision, or a change in sensation after full neurologic examination and initial work-up.
Abnormal eye findings on physical or neurologic examination (papilledema, nystagmus, ocular nerve palsies, visual field deficit etc).
Anosmia (loss of smell) (documented by objective testing).
For evaluation of known or suspected cerebrospinal fluid (CSF) leakage.
Immunocompromised patient (e.g., transplant recipients, HIV with CD4<200, primary immunodeficiency syndromes, hematologic malignancies) with focal neurologic-symptoms, headaches, behavioral, cognitive or personality changes.
Initial imaging of a suspected or known Arnold Chiari malformation (ACM)
Optic neuritis.
Initial evaluation for a known syrinx or syringomyelia.
Suspected cholesteatoma.

Indications for combination studies:
- **Brain MRI/Neck MRA** –
 - Confirmed carotid occlusion >60%, surgery or angioplasty candidate.
- **Brain MRI/Cervical MRI** –
 - For evaluation of Arnold Chiari Malformation.
 - For follow-up of known multiple sclerosis (MS).
- **Brain MRI/Orbit MRI** –
 - For approved indications as noted above and being performed in a child under 3 years of age who will need anesthesia for the procedure and there is a suspicion of concurrent intracranial tumor (e.g. “trilateral retinoblastoma”)
 - Unilateral papilledema: to distinguish a compressive lesion on the optic nerve or optic disc swelling associated with acute demyelinating optic neuritis in multiple sclerosis from nonarteritic anterior ischemic optic neuropathy (AION), central retinal vein occlusion or optic nerve infiltrative disorders.

ADDITIONAL INFORMATION RELATED TO BRAIN MRI:

MMSE - The Mini Mental State Examination (MMSE) is a tool that can be used to systematically and thoroughly assess mental status. It is an 11-question measure that tests five areas of cognitive function: orientation, registration, attention and calculation, recall, and language. The MMSE has been the most commonly used measure of cognitive function in dementia research, but researchers have recognized that it is relatively insensitive and variable in mildly impaired individuals. The maximum score is 30. A score of 23 or lower is indicative of cognitive impairment. The MMSE takes only 5-10 minutes to administer and is therefore practical to use repeatedly and routinely.

MoCA - The Montreal Cognitive Assessment (MoCA) was designed as a rapid screening instrument for mild cognitive dysfunction. It assesses different cognitive domains: attention and concentration, executive functions, memory, language, visuoconstructional skills, conceptual thinking, calculations, and orientation. MoCA differs from the MMSE mainly by including tests of executive function and abstraction, and by putting less weight on orientation to time and place. Ten of the MMSE’s 30 points are scored solely on the time-place orientation test, whereas the MoCA assigns it a maximum of six points. The MoCA also puts more weight on recall and attention-calculation performance, while de-emphasizing language skill. Time to administer the MoCA is approximately 10 minutes. The total possible score is 30 points: a score of 26 or above is considered normal.
MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindications. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindications.

Combination MRI/MRA of the Brain – This is one of the most misused combination studies and these examinations should be ordered in sequence, not together. Vascular abnormalities can be visualized on the brain MRI.

MRI for Headache - Generally, magnetic resonance imaging is the preferred imaging technique for evaluating the brain parenchyma and CT is preferable for evaluating subarachnoid hemorrhage. CT is faster and more readily available than MRI and is often used in urgent clinical situations. Neurologic imaging is warranted in patients with headache disorders along with abnormal neurologic examination results or predisposing factors for brain pathology. Contrast enhanced MRI is performed for evaluation of inflammatory, infectious, neoplastic and demyelinating conditions.

MRI for Macrocephaly - Consider ultrasound for child <6 months of age for macrocephaly.

MRI and Positron Emission Tomography (PET) for Chronic Seizures – When MRI is performed in the evaluation of patients for epilepsy surgery, almost a third of those with electrographic evidence of temporal lobe epilepsy have normal MRI scans. Interictal positron emission tomography (PET) may be used to differentiate patients with MRI-negative temporal lobe epilepsy.

MRI and Multiple Sclerosis – Current advances in MRI improve the ability to diagnose, monitor and understand the pathophysiology of MS. Different magnetic resonance methods are sensitive to different aspects of MS pathology and by the combining of these methods, an understanding of the mechanisms underlying MS may be increased.

MRI and Vertigo – Magnetic resonance imaging is appropriate in the evaluation of patients with vertigo who have neurologic signs and symptoms, progressive unilateral hearing loss or risk factors for cerebrovascular disease. MRI is more appropriate than CT for diagnosing vertigo due to its superiority in visualizing the posterior portion of the brain, where most central nervous system disease that causes vertigo is found. MRI is helpful in diagnosing vascular causes of vertigo.

REFERENCES

ACCF Scientific Statement on the evaluation of syncope; from the American Heart Association Councils on Clinical Cardiology. (2006). Circulation, Jan 17;113(2):316-27. http://circ.ahajournals.org/content/113/2/316.full

CPT Codes: 70554, 70555

INTRODUCTION:

Functional MRI (fMRI) of the brain is a non-invasive imaging technique, using radio waves and a strong magnetic field, to image the brain activity of patients undergoing brain surgery for tumors. It is based on the increase in blood flow to the local vasculature when parts of the brain are activated and helps to determine the location of vital areas of brain function. fMRI images capture blood oxygen levels in parts of the brain that are responsible for perception, cognition and movement, allowing neurosurgeons to operate with less possibility of harming areas that are critical to the patient’s quality of life. fMRI is also used to image and localize abnormal brain function in patients with seizures.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR FUNCTIONAL BRAIN MRI:

Pre-operative Evaluation:
- With brain tumors where fMRI may have a significant role in mapping lesions.
- With seizures where fMRI may have a significant role in mapping lesions.

ADDITIONAL INFORMATION RELATED TO BRAIN MRI:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

fMRI and Brain Tumors – fMRI may significantly affect therapeutic planning in patients who have potentially resectable brain tumors. Due to its non-invasiveness, its relatively high spatial resolution and its pre-operative results, fMRI is used before surgery in the evaluation of patients with brain tumors. fMRI may have a significant role in mapping lesions that are located in close proximity to vital areas of brain function (language, sensory motor, and visual). It can determine the precise spatial relationship between the lesion and adjacent functionally essential parenchyma allowing removal of as much pathological tissue as possible during resection of brain tumors without compromising essential brain functions. fMRI provides an alternative to other invasive tests such as the Wada test and direct electrical stimulation.

fMRI and Seizures – Brain fMRI can influence the diagnostic and therapeutic decisions of the seizure team, thereby affecting the surgical approach and outcomes. Brain surgery is often the treatment for patients with epilepsy, especially patients with a single seizure focus. fMRI may have a significant role in
mapping lesions that are located in close proximity to vital areas of brain function (language, sensory motor, and visual).

fMRI can determine the location of the brain functions of areas bordering the lesion, resulting in better outcomes with less neurologic deficit.

fMRI as an Alternative to the Invasive WADA test and Direct Electrical Stimulation – fMRI is considered an alternative to the Wada test and direct electrical stimulation as it is a non-invasive method for location of vital brain areas. The Wada test is used for the pre-operative evaluations of patients with brain tumors and seizures to determine which side of the brain is responsible for vital cognitive functions, e.g., speech and memory. It can assess the surgical risk of damaging the vital areas of the brain. The Wada test is invasive, involving an angiography procedure to guide a catheter to the internal carotid where a barbiturate is injected, putting one hemisphere of the brain to sleep. Direct electrical stimulation mapping is invasive requiring the placement of electrodes in the brain. The electrodes are used to stimulate multiple cortical sites in the planned area of resection to allow the surgeons to identify and mark which areas can be safely resected.

REFERENCES:

INTRODUCTION:
Computed tomography (CT) scans provide greater clarity than regular x-rays and are used to further examine abnormalities found on chest x-rays. They may be used for detection and evaluation of various disease and conditions in the chest, e.g., tumor, inflammatory disease, vascular disease, congenital abnormalities, trauma and symptoms such as hemoptysis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CHEST CT:

Screening for lung cancer using CT:
• Low-dose computed tomography (CT) scanning no more frequently than annually may be considered medically necessary as a screening technique for lung cancer in individuals who meet all of the following criteria:
 o Between 55 and 80 years of age
 o History of cigarette smoking of at least 30 pack-years
 o If former smoker, quit within the previous 15 years

Note: Selection criteria are based on the National Lung Screening Trial (NLST).

Low-dose CT scanning is considered investigational as a screening technique for lung cancer in all other situations.

This policy does not apply to individuals with signs and/or symptoms of lung disease. In symptomatic individuals, a diagnostic work-up appropriate to the clinical presentation should be undertaken, rather than screening.

For evaluation of known tumor, cancer or mass:
• Initial evaluation of diagnosed cancer.
• Evaluation of known tumor or cancer for patient undergoing active treatment with most recent follow-up study
• Evaluation of known tumor or cancer or history of prior cancer presenting with new signs (i.e., physical, laboratory, or imaging findings) or new symptoms.
• Cancer surveillance: Active monitoring for recurrence as clinically indicated.

Evaluation of suspicious mass/tumor (unconfirmed cancer diagnosis):
• Initial evaluation of suspicious mass/tumor found on an imaging study and needing clarification or found by physical exam and remains non-diagnostic after x-ray or ultrasound is completed.
• Known distant cancer with suspected chest/lung metastasis based on a sign, symptom, imaging study or abnormal lab value.
• For the follow-up evaluation of a nodule with a previous CT (follow-up intervals approximately 3, 6, 12 and 24 months).

Known or suspected interstitial lung disease (e.g. idiopathic interstitial lung diseases, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, pneumoconiosis, sarcoidosis, silicosis and asbestosis) and initial x-ray has been performed:
• With abnormal physical, laboratory, and/or imaging findings requiring further evaluation.

Known or suspected infection or inflammatory disease (i.e., complicated pneumonia not responding to treatment, abscess, Tuberculosis (TB), empyema or immunosuppression post-organ transplant with new symptoms or findings) and initial x-ray has been performed:
• With abnormal physical, laboratory, and/or imaging findings requiring further evaluation.
• For evaluation of known inflammatory disease:
 o Initial evaluation
 o During treatment
 o With new signs and symptoms
• For evaluation of non-resolving pneumonia documented by at least two imaging studies:
 o Unimproved with 4 weeks of antibiotic treatment OR
 o Not resolved at 8 weeks
• For evaluation of lung abscess, cavitary lesion, or empyema, demonstrated or suggested on prior imaging.

Suspected vascular disease, (e.g., aneurysm, dissection):
• For evaluation of known or suspected superior vena cava (SVC) syndrome
• Suspected thoracic/thoracoabdominal aneurysm or dissection (documentation of clinical history may include hypertension and reported “tearing or ripping type” chest pain) when contrast is contraindicated.

Known vascular disease
• For follow-up of known vascular disease (aneurysm).

Known or suspected congenital abnormality:
• For evaluation of known or suspected congenital abnormality
• Vascular: suggest Chest CTA or Chest MRA depending on age and radiation safety issues.
• Nonvascular: abnormal imaging and/or physical examination finding.

Hemoptysis:
• For evaluation of hemoptysis and prior x-ray performed.

Post-operative/procedural evaluation:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• < 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
Cancer surveillance - Active monitoring for recurrence as clinically indicated.

Other indications for Chest CT:
- Pre-operative evaluation.
- For further evaluation after abnormal imaging within past 30 - 60 days and with no improvement on x-ray, (not indicated with known rib fractures).
- For evaluation of persistent unresolved cough with at least four weeks duration, unresponsive medical treatment and chest x-ray has been performed.
- For evaluation of other chest or thorax adenopathy.
- Evaluation of pneumothorax.
- For evaluation of vocal cord paralysis.
- For suspected thymoma with myasthenia gravis.

Combination of studies with Chest CT:
- Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

COMBINATION OF STUDIES WITH CHEST CT/SINUS CT:
- For poorly controlled asthma associated with upper respiratory tract infection. May be preformed without failing 4 consecutive weeks of treatment with medication.
- Granulomatosis with polyangiitis (GPA) (Wegener's).

ADDITIONAL INFORMATION RELATED TO CHEST CT:

CT for Management of Hemoptysis – High-resolution CT (HRCT) is useful for estimating the severity of hemoptysis, localizing the bleeding site and determining the cause of the bleeding. Its results can be related to the severity of bleeding. The volume of expectorated blood and the amount of blood that may be retained within the lungs without being coughed up are important. HRCT is a way to evaluate the amount of bleeding and its severity. It may also help in the localization of bleeding sites and help in detecting the cause of bleeding.

CT and Solitary Pulmonary Nodules – Solitary Pulmonary nodules are abnormalities that are solid, semisolid and non solid: another term to describe a nodule is focal opacity. CT makes it possible to find smaller nodules and contrast-enhanced CT is used to differentiate benign from malignant pulmonary nodules. When a nodule is increasing in size or has spiculated margins or mixed solid and ground-glass attenuation, malignancy should be expected. Patients who have pulmonary nodules and who are immunocompromised may be subject to inflammatory processes.

CT and Empyema – Contrast-enhanced CT used in the evaluation of the chest wall may detect pleural effusion and differentiate a peripheral pulmonary abscess from a thoracic empyema. CT may also detect pleural space infections and help in the diagnosis and staging of thoracic empyema.

CT and Superior Vena Cava (SVC) Syndrome – SVC is associated with cancer, e.g., lung, breast and mediastinal neoplasms. These malignant diseases cause invasion of the venous intima or an extrinsic mass effect. Adenocarcinoma of the lung is the most common cause of SVC. SVC is a clinical diagnosis with typical symptoms of shortness of breath along with facial and upper extremity edema. Computed tomography (CT), often the most readily available technology, may be used as confirmation and may provide information including possible causes.
CT and Pulmonary Embolism (PE) – Spiral CT is sometimes used as a substitute for pulmonary angiography in the evaluation of pulmonary embolism. It may be used in the initial test for patients with suspected PE when they have an abnormal baseline chest x-ray. It can differentiate between acute and chronic pulmonary embolism but it can not rule out PE and must be combined with other diagnostic tests to arrive at a diagnosis. CT chest is NOT indicated if the patient has none of the risks/factors AND the D-Dimer is negative. (D-Dimer is a blood test that measures fibrin degradation products that are increased when increased clotting and clot degradation is going on in the body.)

REFERENCES

CPT Codes: 71275

Computed tomography angiography (CTA) is a non-invasive imaging modality that may be used in the evaluation of thoracic vascular problems. Chest CTA (non-coronary) may be used to evaluate vascular conditions, e.g., pulmonary embolism, thoracic aneurysm, thoracic aortic dissection, aortic coarctation. CTA depicts the vascular structures as well as the surrounding anatomical structures.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CHEST CTA:

For evaluation of suspected or known pulmonary embolism (excludes low risk*)

For evaluation of suspected or known vascular abnormalities:
- For evaluation of a thoracic/thoracoabdominal aneurysm or dissection (documentation of clinical history may include hypertension and reported “tearing or ripping type” chest pain).
- Congenital thoracic vascular anomaly, e.g., coarctation of the aorta or evaluation of a vascular ring suggested by GI study).
- Signs or symptoms of vascular insufficiency of the neck or arms (e.g., subclavian steal syndrome with abnormal ultrasound).
- Follow-up evaluation of progressive vascular disease when new signs or symptoms are present.
- Pulmonary hypertension.

Preoperative evaluation
- Known vascular abnormalities and patient has not had a catheter angiogram within the last month.
- Proposed ablation procedure for atrial fibrillation.

Postoperative or post-procedural evaluation
- Known vascular abnormalities with physical evidence of post-operative bleeding complication or re-stenosis.
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Chest CTA and Abdomen CTA or Abdomen/Pelvis CTA or Pelvis CTA combo:
- For evaluation of extensive vascular disease involving the chest and abdominal cavities such as aortic dissection, vasculitic diseases such as Takayasu’s arteritis, significant post-traumatic or post-procedural vascular complications, etc.
- For preoperative or preprocedural evaluation such as transcatheter aortic valve replacement (TAVR).

ADDITIONAL INFORMATION RELATED TO CHEST CTA:

CTA and Coarctation of the Aorta – Coarctation of the aorta is a common vascular anomaly characterized by a constriction of the lumen of the aorta distal to the origin of the left subclavian artery near the insertion of the ligamentum arteriosum. The clinical sign of coarctation of the aorta is a disparity in the
pulsations and blood pressures in the legs and arms. Chest CTA may be used to evaluate either suspected or known aortic coarctation and patients with significant coarctation should be treated surgically or interventionally.

CTA and Pulmonary Embolism (PE) – Note: D-Dimer blood test in patients at low risk* for DVT is indicated prior to CTA imaging. Negative D-Dimer suggests alternative diagnosis in these patients.

*Low risk defined as NO to ALL of the following questions:
1) evidence of current or prior DVT:
2) HR > 100:
3) cancer diagnosis:
4) recent surgery or prolonged immobilization:
5) hemoptysis:
6) history of PE:
and another diagnosis is more likely

CTA has high sensitivity and specificity and is the primary imaging modality to evaluate patients suspected of having acute pulmonary embolism. When high suspicion of pulmonary embolism on clinical assessment is combined with a positive CTA, there is a strong indication of pulmonary embolism. Likewise, a low clinical suspicion and a negative CTA can be used to rule out pulmonary embolism.

CTA and Thoracic Aortic Aneurysms – Computed tomographic angiography (CTA) allows the examination of the precise 3-D anatomy of the aneurysm from all angles and shows its relationship to branch vessels. This information is very important in determining the treatment: endovascular stent grafting or open surgical repair.

CTA and Thoracic Aorta Endovascular Stent-Grafts – CTA is an effective alternative to conventional angiography for postoperative follow-up of aortic stent grafts. It is used to review complications after thoracic endovascular aortic repair. CTA can detect luminal and extraluminal changes to the thoracic aortic after stent-grafting and can be performed efficiently with fast scanning speed and high spatial and temporal resolution.

REFERENCES

CPT Codes: 71550, 71551, 71552

INTRODUCTION:

Magnetic Resonance Imaging (MRI) is a noninvasive imaging technique for detection and evaluation of various disease and conditions in the chest, e.g., congenital anomalies and aneurysms. MRI may be used instead of computed tomography (CT) in patients with allergies to radiographic contrast or with impaired renal function.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CHEST MRI:

- For evaluation of mediastinal or hilar mass of patient with renal failure or allergy to contrast material.
- For evaluation of myasthenia gravis with suspected thymoma.
- For evaluation of brachial plexus dysfunction (brachial plexopathy/thoracic outlet syndrome).
- For evaluation of a thoracic/thoracoabdominal aneurysm or dissection (documentation of clinical history may include hypertension and reported “tearing or ripping type” chest pain).
- For evaluation of congenital heart disease, or cardiac and non-cardiac malformations, [e.g., vascular rings or pulmonary slings, aortic arch anomalies and patent ductus arteriosus (PDA)].
- For evaluating whether masses invade into specific thoracic structures (e.g. aorta, pulmonary artery, brachial plexus, subclavian vessels, or thoracic spine).
- To determine the consistency of thoracic masses (cystic vs. solid vs. mixed).

ADDITIONAL INFORMATION RELATED TO CHEST MRI:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRI and Myasthenia Gravis – Myasthenia Gravis is a chronic autoimmune disease characterized by weakness of the skeletal muscles causing fatigue and exhaustion that is aggravated by activity and relieved by rest. It most often affects the ocular and other cranial muscles and is thought to be caused by the presence of circulating antibodies. Symptoms include ptosis, diplopia, chewing difficulties, and dysphagia. Thymoma has a known association with myasthenia. Contrast-enhanced MRI may be used to identify the presence of a mediastinal mass suggestive of myasthenia gravis in patients with renal failure or allergy to contrast material.
MRI and Thoracic Outlet Syndrome - Thoracic outlet syndrome is a group of disorders involving compression at the superior thoracic outlet that affects the brachial plexus, the subclavian artery and veins. It refers to neurovascular complaints due to compression of the brachial plexus or the subclavian vessels. Magnetic resonance multi-plane imaging shows bilateral images of the thorax and brachial plexus and can demonstrate the compression of the brachial plexus and venous obstruction.

MRI and Brachial Plexus - MRI is the only diagnostic tool that accurately provides high resolution imaging of the brachial plexus. The brachial plexus is formed by the cervical ventral rami of the lower cervical and upper thoracic nerves which arise from the cervical spinal cord, exit the bony confines of the cervical spine, and traverse along the soft tissues of the neck, upper chest, and course into the arms.

REFERENCES

Magnetic resonance angiography (MRA) is a noninvasive technique used to provide cross-sectional and projection images of the thoracic vasculature, including large and medium sized vessels, e.g., the thoracic aorta. It provides images of normal as well as diseased blood vessels and quantifies blood flow through these vessels. Successful vascular depiction relies on the proper imaging pulse sequences. MRA may use a contrast agent, gadolinium, which is non-iodine-based, for better visualization. It can be used in patients who have history of contrast allergy and who are at high risk of kidney failure.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CHEST MRA:

For evaluation of suspicious mass and CTA is contraindicated due to a history of contrast allergy or high risk for contrast induced renal failure.

For evaluation of suspected or known pulmonary embolism (excludes low risk*).

For evaluation of suspected or known vascular abnormalities:
- Thoracic/thoracoabdominal aneurysm or dissection (documentation of clinical history may include hypertension and reported “tearing or ripping type” chest pain).
- Congenital thoracic vascular anomaly, (e.g., coarctation of the aorta or evaluation of a vascular ring suggested by GI study).
- Signs or symptoms of vascular insufficiency of the neck or arms (e.g., subclavian steal syndrome with abnormal ultrasound).
- Follow-up evaluation of progressive vascular disease when new signs or symptoms are present.
- Pulmonary hypertension.

Preoperative evaluation
- Known vascular abnormalities
- Proposed ablation procedure for atrial fibrillation.

Postoperative or post-procedural evaluation
- Known vascular abnormalities with physical evidence of post-operative bleeding complication or restenosis.
- Request for a follow-up study: A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO CHEST MRA:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.
MRA and Coarctation of the Aorta – One of the most common congenital vascular anomalies is coarctation of the aorta which is characterized by obstruction of the juxtaductal aorta. Clinical symptoms, e.g., murmur, systemic hypertension, difference in blood pressure in upper and lower extremities, absent femoral or pedal pulses, may be present. Gadolinium enhanced 3D MRA may assist in preoperative planning as it provides angiographic viewing of the aorta, the arch vessels and collateral vessels. It may also assist in the identification of postoperative complications.

MRA and Pulmonary Embolism (PE) – Note: D-Dimer blood test in patients at low risk* for DVT is indicated to prior to MRA imaging. Negative D-Dimer suggests alternative diagnosis in these patients.

*Low risk defined as NO to ALL of the following questions:
1) evidence of current or prior DVT;
2) HR > 100;
3) cancer diagnosis;
4) recent surgery or prolonged immobilization;
5) hemoptysis;
6) history of PE;
and another diagnosis is more likely

MRA and Thoracic Aortic Aneurysm – One of the most common indications for thoracic MRA is thoracic aortic aneurysm, most often caused by atherosclerosis. These aneurysms may also be due to aortic valvular disease. Aneurysms are defined by their enlargement and patients with rapidly expanding aortas, or with aortic diameters greater than five or six centimeters, are at high risk of rupture and may require surgery.

MRA and Thoracic Aortic Dissection – The most common clinical symptom of aortic dissection is tearing chest pain and the most common risk factor is hypertension. An intimal tear is the hallmark for aortic dissection and intramural hematoma may also be detected. Unfortunately, patients with aortic dissection may be unstable and not good candidates for routine MR evaluation; MRA may be indicated as a secondary study. 3D MRA is also useful in postoperative evaluation of patients with repaired aortic dissections.

MRA and Central Venous Thrombosis – MRA is useful in the identification of venous thrombi. Venous thrombosis can be evaluated by gadolinium enhanced 3D MRA as an alternative to CTA which may not be clinically feasible due to allergy to iodine contrast media or renal insufficiency.

Other MRA Indications – MRA is useful in the assessment for postoperative complications of pulmonary venous stenosis.

MRI and Patent Ductus Arteriosus – Patent ductus arteriosus (PDA) is a congenital heart problem in which the ductus arteriosus does not close after birth. It remains patent allowing oxygen-rich blood from the aorta to mix with oxygen-poor blood from the pulmonary artery. MRI can depict the precise anatomy of a PDA to aid in clinical decisions. It allows imaging in multiple planes without a need for contrast administration. Patients are not exposed to ionizing radiation.
REFERENCES

INTRODUCTION:

Computed tomography (CT) is performed for the evaluation of the cervical spine. CT may be used as the primary imaging modality or it may complement other modalities. Primary indications for CT include conditions, e.g., traumatic, neoplastic, and infectious. CT is often used to study the cervical spine for conditions such as degenerative disc disease when MRI is contraindicated. CT provides excellent depiction of bone detail and is used in the evaluation of known fractures of the cervical spine and for evaluation of postoperative patients.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CERVICAL SPINE CT:

For evaluation of known fracture:
• To assess union of a fracture when physical examination or plain radiographs suggest delayed or non-healing.
• To determine the position of fracture fragments.

For evaluation of neurologic deficits:
• With any of the following new neurological deficits: extremity weakness; abnormal reflexes; or abnormal sensory changes along a particular dermatome (nerve distribution) as documented on exam.

For evaluation of suspected myelopathy when MRI is contraindicated:
• Progressive symptoms including hand clumsiness, worsening handwriting, difficulty with grasping and holding objects, diffuse numbness in the hands, pins and needles sensation, increasing difficulty with balance and ambulation (unsteadiness, broad-based gait), increased muscle tone, weakness and wasting of the upper and lower limbs; diminished sensation to light touch, temperature, proprioception, vibration; bowel and bladder dysfunction in more severe cases.

For evaluation of chronic back pain with any of the following when Cervical Spine MRI is contraindicated:
• Failure of conservative treatment* for at least six (6) weeks within the last six (6) months.
• With progression or worsening of symptoms during the course of conservative treatment*.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of new onset of neck pain when Cervical Spine MRI is contraindicated:
• Failure of conservative treatment*, for at least six (6) weeks.
• With progression or worsening of symptoms during the course of conservative treatment*.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of trauma or acute injury within past 72 hour:
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With progression or worsening of symptoms during the course of conservative treatment*.

For evaluation of known tumor, cancer, or evidence of metastasis:
• For staging of known tumor.
• For follow-up evaluation of patient undergoing active treatment.
• Presents with new signs or symptoms (e.g., laboratory and/or imaging findings) of new tumor or change in tumor.
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• With evidence of metastasis on bone scan or previous imaging study.
• With no imaging/restaging within the past ten (10) months.

For evaluation of suspected tumor:
• Prior abnormal or indeterminate imaging that requires further clarification.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• < 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 ○ Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected infection, abscess, or inflammatory disease when Cervical Spine MRI is contraindicated:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, lymphoma when Cervical Spine MRI is contraindicated:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For post-operative / procedural evaluation for surgery or fracture occurring within the past six (6) months:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
• Changing neurologic status post-operatively.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• Surgical infection as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Delayed or non-healing fracture as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Continuing or recurring symptoms of any of the following neurological deficits: Lower extremity weakness, lower extremity asymmetric reflexes.

Other indications for a Cervical Spine CT:
• For preoperative evaluation and Cervical Spine MRI is contraindicated
• CT myelogram or discogram.
• Suspected cord compression with any of the following neurologic deficits, e.g., extremity weakness, abnormal gait, asymmetric reflexes.
• For evaluation of suspicious sacral dimples associated with lesions such as hairy patches or hemangiomas.
• Known Arnold-Chiari syndrome and Cervical Spine MRI is contraindicated.
• Syrinx or syringomyelia and Cervical Spine MRI is contraindicated.

FOR COMBINATION OF STUDIES WITH CERVICAL SPINE CT:
Cervical/Thoracic/Lumbar CTs:
• CT myelogram or discogram.
• Any combination of these for spinal survey in patient with metastases.
Cervical MR/CT – unstable cranio cervical junction.
Brain CT/Cervical CT – for evaluation of Arnold Chiari Malformation.

ADDITIONAL INFORMATION RELATED TO CERVICAL SPINE CT:

*Conservative Therapy: (spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

**Home Exercise Program (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
• Information provided on exercise prescription/plan AND
• Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason· i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

Cervical myelopathy: Symptom severity varies and a high index of suspicion is essential for making the proper diagnosis in early cases. Symptoms of pain and radiculopathy may not be present. The natural history of myelopathy is characterized by neurological deterioration. The most frequently encountered symptom is gait abnormality (86%) followed by increased muscular reflexes (79.1%), pathological reflexes (65.1%), paresthesia of upper limb (69.8%) and pain (67.4%) (Vitzthum, Hans-Ekkehart, Dalitz, Kristina

REFERENCES

CPT Codes: 72128, 72129, 72130

INTRODUCTION:
Computed tomography is used for the evaluation, assessment of severity and follow-up of diseases of the spine. Its use in the thoracic spine is limited, however, due to the lack of epidural fat in this part of the body. CT myelography improves the contrast severity of CT, but it is also invasive. CT may be used for conditions, e.g., degenerative changes, infection and immune suppression, when magnetic resonance imaging (MRI) is contraindicated. It may also be used in the evaluation of tumors, cancer or metastasis in the thoracic spine, and it may be used for preoperative and post-surgical evaluations. CT obtains images from different angles and uses computer processing to show a cross-section of body tissues and organs. CT is fast and is often performed in acute settings. It provides good visualization of cortical bone.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR THORACIC SPINE CT:

For evaluation of known fracture:
- To assess union of a fracture when physical examination or plain radiographs suggest delayed or non-healing.
- To determine the position of fracture fragments.

For evaluation of neurologic deficits:
- With any of the following new neurological deficits: lower extremity weakness; abnormal reflexes; or abnormal sensory changes along a particular dermatome (nerve distribution) as documented on exam.

For evaluation of suspected myelopathy when MRI is contraindicated:
- Progressive symptoms including unsteadiness, broad-based gait, increased muscle tone, pins and needles sensation, weakness and wasting of the lower limbs, and diminished sensation to light touch, temperature, proprioception, and vibration; bowel and bladder dysfunction in more severe cases.

For evaluation of chronic back pain with any of the following when Thoracic MRI is contraindicated:
- Failure of conservative treatment* for at least six (6) weeks within the last six (6) months.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of new onset of back pain when Thoracic Spine MRI is contraindicated:
- Failure of conservative treatment* for at least six (6) weeks.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of trauma or acute injury within past 72 hours:
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With progression or worsening of symptoms during the course of conservative treatment*.

For evaluation of known tumor, cancer or evidence of metastasis:
• For staging of known tumor.
• For follow-up evaluation of patient undergoing active treatment.
• Presents with new signs or symptoms (e.g., laboratory and/or imaging findings) of new tumor or change in tumor.
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• With evidence of metastasis on bone scan or previous imaging study.
• With no imaging/restaging within the past ten (10) months.

For evaluation of suspected tumor:
• Prior abnormal or indeterminate imaging that requires further clarification.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated

For evaluation of known or suspected infection, abscess, or inflammatory disease when Thoracic MRI is contraindicated:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, lymphoma when Thoracic MRI is contraindicated:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For post-operative / procedural evaluation of surgery or fracture occurring within past six (6) months:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
• Changing neurologic status post-operatively.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• Surgical infection as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Delayed or non-healing fracture as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Continuing or recurring symptoms of any of the following neurological deficits: Lower extremity weakness, lower extremity asymmetric reflexes.

Other indications for a Thoracic Spine CT:
• For pre-operative evaluation and Thoracic MRI is contraindicated
• CT myelogram or discogram.
• Suspected cord compression with any of the following neurologic deficits, e.g., extremity weakness, abnormal gait, asymmetric reflexes and Thoracic Spine MRI is contraindicated.
• For evaluation of suspicious sacral dimples associated with lesions such as hairy patches or hemangiomas
• Syrinx or syringomyelia and Thoracic Spine MRI is contraindicated.
• Known Arnold-Chiari syndrome.

COMBINATION OF STUDIES WITH THORACIC SPINE CT:

Cervical/Thoracic/Lumbar CTs:
• CT myelogram or discogram.
• Any combination of these for spinal survey in patient with metastases.

ADDITIONAL INFORMATION RELATED TO THORACIC SPINE CT:

*Conservative Therapy: (spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

**Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 o Information provided on exercise prescription/plan AND
 o Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason - i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

CT and Infection of the spine - Infection of the spine is not easy to differentiate from other spinal disorders, e.g., degenerative disease, spinal neoplasms, and non-infective inflammatory lesions. Infections may affect different parts of the spine, e.g., vertebrae, intervertebral discs and paraspinal tissues. Imaging is important to obtain early diagnose and treatment to avoid permanent neurology deficits. When MRI is contraindicated, CT may be used to evaluate infections of the spine.

MRI and Degenerative Disc Disease – Degenerative disc disease is very common and CT is indicated when chronic degenerative changes are accompanied by conditions, e.g., new neurological deficits: onset of joint tenderness of a localized area of the spine; new abnormal nerve conductions studies; exacerbation of chronic back pain unresponsive to conservative treatment; and unsuccessful physical therapy/home exercise program, and MRI is contraindicated.

REFERENCES

CPT Codes: 72131, 72132, 72133

INTRODUCTION:
Computed tomographic scans provide bone detail and define the bony anatomy in one or two planes. It demonstrates the lumbar subarachnoid space and provides good visualization of the vertebral canal. Three-dimensional reconstructions using CT help to demonstrate the anatomy of the vertebral canal.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LUMBAR SPINE CT:

For evaluation of known fracture:
- To assess union of a known fracture where physical or plain film findings suggest delayed or non-healing.
- To determine position of known fracture fragments.

For evaluation of neurologic deficits:
- With any of the following new neurological deficits: lower extremity weakness; abnormal reflexes; abnormal sensory changes along a particular dermatome (nerve distribution) as documented on exam; evidence of Cauda Equina Syndrome; bowel or bladder dysfunction; new foot drop.

For evaluation of chronic back pain with any of the following when Lumbar Spine MRI is contraindicated:
- Failure of conservative treatment* for at least six (6) weeks within the last six (6) months.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of new onset of back pain when Lumbar Spine MRI is contraindicated:
- Failure of conservative treatment*, for at least six (6) weeks.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study if (if performed) indicating a spinal abnormality.

For evaluation of trauma or acute injury within past 72 hours:
- Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
- With progression or worsening of symptoms during the course of conservative treatment*.

For evaluation of known tumor, cancer or evidence of metastasis:
- For staging of known tumor.
- For follow-up evaluation of patient undergoing active treatment.
- Presents with new signs or symptoms (e.g., laboratory and/or imaging findings) of new tumor or change in tumor.
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• With evidence of metastasis on bone scan or previous imaging study.
• With no imaging/restaging within the past ten (10) months.

For evaluation of suspected tumor:
• Prior abnormal or indeterminate imaging that requires further clarification

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated

For evaluation of known or suspected infection, abscess, or inflammatory disease when Lumbar Spine MRI is contraindicated:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, lymphoma and Lumbar Spine MRI is contraindicated:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For post-operative / procedural evaluation of surgery or fracture occurring within past six (6) months:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
• Changing neurologic status post-operatively.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• Surgical infection as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Delayed or non-healing fracture as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Continuing or recurring symptoms of any of the following neurological deficits: Lower extremity weakness, lower extremity asymmetric reflexes.

Other indications for a Lumbar Spine CT:
• For preoperative evaluation and Lumbar Spine MRI is contraindicated
• CT myelogram or discogram.
• For evaluation of suspicious sacral dimples associated with lesions such as hairy patches or hemangiomas.
• Tethered cord, known or suspected spinal dysraphism and Lumbar Spine MRI is contraindicated.
• Ankylosing Spondylitis: For diagnosis when suspected as a cause of back or sacroiliac pain and completion of the following initial evaluation and Lumbar Spine MRI is contraindicated:
 o History of back pain associated with morning stiffness
 o Sedimentation rate and/or C-reactive protein
 o HLA B27
 o Non-diagnostic or indeterminate x-ray
• Known arnold-chiari syndrome.
COMBINATION OF STUDIES WITH LUMBAR SPINE CT:

Cervical/Thoracic/Lumbar CTs:
- CT myelogram or discogram
- Any combination of these for spinal survey in patient with metastasis.
- For evaluation of spinal abnormalities associated with Chiari Malformation.

ADDITIONAL INFORMATION RELATED TO LUMBAR SPINE CT:

Conservative Therapy: (spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

Home Exercise Program · (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
- Information provided on exercise prescription/plan AND
- Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason – i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

CT and Fracture of the Lumbar Spine – CT scans of the lumbar spine generate high-resolution spinal images; their contrast definition and the absence of superimposed structures allow accurate diagnosis of lumbar fractures.

CT and Radiculopathy – Lumbar radiculopathy is caused by compression of a dorsal nerve root and/or inflammation that has progressed enough to cause neurologic symptoms, e.g., numbness, tingling, and weakness in leg muscles. These are warning signs of a serious medical condition which need medical attention. Multidetector CT may be performed to rule out or localize lumbar disk herniation before surgical intervention. Radiation dose should be kept as low as possible in young individuals undergoing CT of the lumbar spine.

CT and Degenerative Disease of the Lumbar Spine – Stenosis of the lumbar canal may result from degenerative changes of the discs, ligaments and facet joints surrounding the lumbar canal. Compression of the microvasculature of the bundle of nerve roots in the lumbosacral spine may lead to transient compression of the cauda equina. This is a surgical emergency and CT may be performed to help assess the problem. CT scans provide visualization of the vertebral canal and may demonstrate encroachment of the canal by osteophytes, facets, pedicles or hypertrophied lamina. The anatomy of the vertebral canal is demonstrated by three-dimensional CT.

CT and Low Back Pain – Low back pain by itself is a self-limited condition which does not warrant any imaging studies. One of the “red flags” signifying a more complicated status is focal neurologic deficit with progressive or disabling symptoms. When magnetic resonance imaging (MRI) is contraindicated, CT of the lumbar spine with or without contrast is indicated for low back pain accompanied by a “red flag” symptom. Myelography combined with post-myelography CT is accurate in diagnosing disc herniation and may be useful in surgical planning.
Tethered spinal cord syndrome - a neurological disorder caused by tissue attachments that limit the movement of the spinal cord with the spinal column. Although this condition is rare, it can continue undiagnosed into adulthood. The primary cause is myelomeningocele and lipomyelomeningocele; the following are other causes that vary in severity of symptoms and treatment.

- Dermal sinus tract (a rare congenital deformity)
- Diastematomyelia (split spinal cord)
- Lipoma
- Tumor
- Thickened/tight filum terminale (a delicate filament near the tailbone)
- History of spine trauma/surgery

Magnetic resonance imaging (MRI) can display the low level of the spinal cord and a thickened filum terminale, the thread-like extension of the spinal cord in the lower back. Treatment depends upon the underlying cause of the tethering. If the only abnormality is a thickened, shortened filum then limited surgical treatment may suffice.

REFERENCES

CPT Codes: 72141, 72142, 72156

IMPORTANT NOTE:
“Positional (non-recumbent) magnetic resonance imaging (MRI) is considered investigational, including its use in the evaluation of patients with cervical, thoracic or lumbosacral back pain.

INTRODUCTION:
Magnetic resonance imaging (MRI) produces high quality multiplanar images of organs and structures within the body without radiation. It is the preferred modality for evaluating the internal structure of the spinal cord, providing assessment of conditions such as degenerative disc pathology, osteomyelitis and discitis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CERVICAL SPINE MRI:

For evaluation of known or suspected multiple sclerosis (MS):
- Evidence of MS on recent baseline Brain MRI.
- Suspected MS with new or changing symptoms consistent with cervical spinal cord disease.
- Follow up to known Multiple Sclerosis.
- Follow up to the initiation or change in medication for patient with known Multiple Sclerosis.

For evaluation of neurologic deficits:
- With any of the following new neurological deficits: extremity weakness; abnormal reflexes; or abnormal sensory changes along a particular dermatome (nerve distribution) as documented on exam.

For evaluation of suspected myelopathy:
- Progressive symptoms including hand clumsiness, worsening handwriting, difficulty with grasping and holding objects, diffuse numbness in the hands, pins and needles sensation, increasing difficulty with balance and ambulation (unsteadiness, broad-based gait), increased muscle tone, weakness and wasting of the upper and lower limbs, diminished sensation to light touch, temperature, proprioception, vibration, bowel and bladder dysfunction in more severe cases.

For evaluation of chronic back pain with any of the following:
- Failure of conservative treatment* for at least six (6) weeks within the last six (6) months.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of new onset of neck pain:
- Failure of conservative treatment*, for at least six (6) weeks.
- With progression or worsening of symptoms during the course of conservative treatment*.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of trauma or acute injury within past 72 hours:
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With progression or worsening of symptoms during the course of conservative treatment*.

For evaluation of known tumor, cancer, or evidence of metastasis:
• For staging of known tumor.
• For follow-up evaluation of patient undergoing active treatment.
• Presents with new signs or symptoms (e.g., laboratory and/or imaging findings) of new tumor or change in tumor.
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• With evidence of metastasis on bone scan or previous imaging study.
• With no imaging/restaging within the past ten (10) months.

For evaluation of suspected tumor:
• Prior abnormal or indeterminate imaging that requires further clarification.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• < 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected infection, abscess, or inflammatory disease:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, lymphoma:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For post-operative / procedural evaluation for surgery or fracture occurring within the past six (6) months:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
• Changing neurologic status post-operatively.
• With an abnormal electromyography (EMG) or nerve conduction study if radicular symptoms are present.
• Surgical infection as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Delayed or non-healing fracture as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Continuing or recurring symptoms of any of the following neurological deficits: Lower extremity weakness, lower extremity asymmetric reflexes.

Other indications for a Cervical Spine MRI:
• For preoperative evaluation.
• Suspected cord compression with any of the following neurological deficits: extremity weakness; abnormal gait; asymmetric reflexes.
• For evaluation of suspicious sacral dimples associated with lesions such as hairy patches or hemangiomas.
• Known Arnold-Chiari syndrome.
• Syrinx or syringomyelia.

COMBINATION OF STUDIES WITH CERVICAL SPINE MRI:

Cervical/Thoracic/Lumbar MRIs:
• Any combination of these for scoliosis survey in infant/child.
• Any combination of these for spinal survey in patient with metastases.
• For evaluation of spinal abnormalities associated with Chiari Malformation.

Cervical MRI/CT
• For unstable cranio-cervical junction.

Brain MRI/Cervical MRI –
• For evaluation of Arnold Chiari malformation.
• For follow-up of known Multiple Sclerosis (MS).

ADDITIONAL INFORMATION RELATED TO CERVICAL SPINE MRI:

Conservative Therapy: (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
• Information provided on exercise prescription/plan AND
• Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason - i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

Cervical myelopathy: Symptom severity varies and a high index of suspicion is essential for making the proper diagnosis in early cases. Symptoms of pain and radiculopathy may not be present. The natural history of myelopathy is characterized by neurological deterioration. The most frequently encountered symptom is gait abnormality (86%) followed by increased muscular reflexes (79.1%), pathological reflexes (65.1%), paresthesia of upper limb (69.8%) and pain (67.4%) Vitzthum, Hans-Ekkehart, Dalitz, Kristina

MRI for Evaluation of Discitis – Discitis is a known complication of cervical discography. Postoperative discitis in the cervical spine does not occur frequently but result from accidental inoculation of bacteria into the disc space intra-operatively by a contaminated spinal needle being used as a radiological marker. There may be other causes for postoperative discitis, e.g., esophageal perforation, hematogenous spread, inoculation of bacteria during surgery. Patients with an alteration in the nature of their symptoms after cervical discectomy and fusion may have discitis. Symptoms may include complaints of mild paresthesia
in extremities and neck pain. MRI may be performed to reveal feature of discitis with associated abscesses and may help to confirm the diagnosis and decide on the further management.

MRI for Cervical Radiculopathy – MRI is a useful test to evaluate the spine because it can show abnormal areas of the soft tissues around the spine; in addition to the bones, it can also show pictures of the nerves and discs and is used to find tumors, herniated discs or other soft-tissue disorders. MRI has a role both in the pre-operative screening and post-operative assessment of radicular symptoms due to either disc or osteophyte.

MRI and Multiple Sclerosis (MS) – MRI is a sensitive method of detecting the white matter lesions of MS. These plaques on MRI generally appear as multiple, well demarcated, homogenous, small ovoid lesions which lack mass effect and are oriented perpendicular to the long axis of the lateral ventricles. Sometimes they present as large, space occupying lesions that may be misinterpreted as tumors, abscesses or infarcts.

MRI and Neck Pain – Neck pain is common in the general population and usually relates to musculoskeletal causes but it may also be caused by spinal cord tumors. When neck pain is accompanied by extremitity weakness, abnormal gait or asymmetric reflexes, spinal MRI may be performed to evaluate the cause of the pain. MRI may reveal areas of cystic expansion within the spinal cord. Enhancement with gadolinium contrast may suggest that the lesion is neoplastic.

Back Pain with Cancer History – Radiographic (x-ray) examination should be performed in cases of back pain when a patient has a cancer history. This can make a diagnosis in many cases. This may occasionally allow for selection of bone scan in lieu of MRI in some cases. When radiographs do not answer the clinical question, then MRI may be appropriate after a consideration of conservative care.

For example, bone metastases occur in a minority of all breast cancer patients. Low stage breast cancer patients are very unlikely to have bone metastases (Coleman RE et al.). Radiographic (X-ray) evaluation prior to MRI is appropriate. A trial of conservative care in back pain is also indicated and appropriate in these low stage patients.

Advanced stage breast cancer patients do develop bone metastases in a slight majority of cases (Coleman RE et al.). Back pain in advanced stage breast cancer patients should still be initially evaluated with X-ray (which has the chance of demonstrating cause of pain, or identifying multiple metastases, and may change the subsequent imaging choice for optimal staging). However, these patients should, in most cases, not undergo a trial of conservative care.

REFERENCES

CPT Codes: 72146, 72147, 72157

IMPORTANT NOTE:
“Positional (non-recumbent) magnetic resonance imaging (MRI) is considered investigational, including its use in the evaluation of patients with cervical, thoracic or lumbosacral back pain.

INTRODUCTION:
Magnetic resonance imaging produces high quality multiplanar images of organs and structures within the body without using ionizing radiation. It is used for evaluation, assessment of severity and follow-up of diseases of the spine and is the preferred modality for imaging intervertebral disc degeneration. High contrast resolution (soft tissue contrast) and multiplanar imaging (sagittal as well as axial planes) are helpful in the evaluation of possible disc herniation and detecting nerve root compression. MRI is one of the most useful techniques to evaluate spine infection and is also used to evaluate tumors, cancer and immune system suppression.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR THORACIC SPINE MRI:

For evaluation of neurologic deficits:
- With any of the following new neurological deficits: extremity weakness; abnormal reflexes; or abnormal sensory changes along a particular dermatome (nerve distribution) as documented on exam.

For evaluation of suspected myelopathy:
- Progressive symptoms including unsteadiness, broad-based gait, increased muscle tone, pins and needles sensation, weakness and wasting of the lower limbs, and diminished sensation to light touch, temperature, proprioception, and vibration; bowel and bladder dysfunction in more severe cases.

For evaluation of chronic back pain with any of the following:
- Failure of conservative treatment* for at least six (6) weeks within the last six (6) months.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of new onset of back pain:
- Failure of conservative treatment* for at least six (6) weeks.
- With progression or worsening of symptoms during the course of conservative treatment*.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.

For evaluation of trauma or acute injury within past 72 hours:
- Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With progression or worsening of symptoms during the course of conservative treatment*.

For evaluation of known tumor, cancer or evidence of metastasis:
• For staging of known tumor.
• For follow-up evaluation of patient undergoing active treatment.
• Presents with new signs or symptoms (e.g., laboratory and/or imaging findings) of new tumor or change in tumor
• Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• With evidence of metastasis on bone scan or previous imaging study.
• With no imaging/restaging within the past ten (10) months.

For evaluation of suspected tumor:
• Prior abnormal or indeterminate imaging that requires further clarification.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected infection, abscess, or inflammatory disease:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, or lymphoma:
• As evidenced by signs/symptoms, laboratory or prior imaging findings.

For post-operative / procedural evaluation of surgery or fracture occurring within past six (6) months:
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
• Changing neurologic status post-operatively.
• With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
• Surgical infection as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Delayed or non-healing fracture as evidenced by signs/symptoms, laboratory or prior imaging findings.
• Continuing or recurring symptoms of any of the following neurological deficits: Lower extremity weakness, lower extremity asymmetric reflexes.

Other indications for a Thoracic Spine MRI:
• For preoperative evaluation
• Suspected cord compression with any of the following neurological deficits: extremity weakness; abnormal gait; asymmetric reflexes.
• For evaluation of suspicious sacral dimples associated with lesions such as hairy patches or hemangiomas.
• Known arnold-chiari syndrome.
• Syrinx or syringomyelia.

COMBINATION OF STUDIES WITH THORACIC SPINE MRI:

Cervical/Thoracic/Lumbar MRIs:
 - Any combination of these for scoliosis survey in infant/child.
 - Any combination of these for spinal survey in patient with metastases.
 - For evaluation of spinal abnormalities associated with Chiari Malformation.

ADDITIONAL INFORMATION RELATED TO THORACIC SPINE MRI

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

*Conservative Therapy: (spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

**Home Exercise Program: (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 o Information provided on exercise prescription/plan AND
 o Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

MRI and Spinal Infections – Infection of the spine is not easy to differentiate from other spinal disorders, e.g., degenerative disease, spinal neoplasms, and noninfectious inflammatory lesions. Infections may affect different parts of the spine, e.g., vertebrae, intervertebral discs and paraspinal tissues. Imaging is important to obtain early diagnose and treatment to avoid permanent neurology deficits. MRI is the preferred imaging technique to evaluate infections of the spine. With its high contrast resolution and direct multiplanar imaging, it has the ability to detect and delineate infective lesions irrespective of their spinal location.

MRI and Degenerative Disc Disease – Degenerative disc disease is very common and MRI is indicated when chronic degenerative changes are accompanied by conditions, e.g., new neurological deficits: onset of joint tenderness of a localized area of the spine; new abnormal nerve conductions studies: exacerbation of chronic back pain unresponsive to conservative treatment: and unsuccessful physical therapy/home exercise program.

MRI and Multiple Sclerosis (MS) – MRI is a sensitive method of detecting the white matter lesions of MS. These plaques on MRI generally appear as multiple, well demarcated, homogenous, small ovoid lesions which lack mass effect and are oriented perpendicular to the long axis of the lateral ventricles. Sometimes they present as large, space occupying lesions that may be misinterpreted as tumors, abscesses or infarcts.
Back Pain with Cancer History • Radiographic (x-ray) examination should be performed in cases of back pain when a patient has a cancer history. This can make a diagnosis in many cases. This may occasionally allow for selection of bone scan in lieu of MRI in some cases. When radiographs do not answer the clinical question, then MRI may be appropriate after a consideration of conservative care.

For example, bone metastases occur in a minority of all breast cancer patients. Low stage breast cancer patients are very unlikely to have bone metastases (Coleman RE et al). Radiographic (X-ray) evaluation prior to MRI is appropriate. A trial of conservative care in back pain is also indicated and appropriate in these low stage patients.

Advanced stage breast cancer patients do develop bone metastases in a slight majority of cases (Coleman RE et al). Back pain in advanced stage breast cancer patients should still be initially evaluated with X-ray (which has the chance of demonstrating cause of pain, or identifying multiple metastases, and may change the subsequent imaging choice for optimal staging). However, these patients should, in most cases, not undergo a trial of conservative care.”

REFERENCES

CPT Codes: 72148, 72149, 72158

IMPORTANT NOTE:
“Positional (non-recumbent) magnetic resonance imaging (MRI) is considered investigational, including its use in the evaluation of patients with cervical, thoracic or lumbosacral back pain.

INTRODUCTION:
Magnetic resonance imaging (MRI) is used in the evaluation, diagnosis and management of spine related conditions, e.g., degenerative disc disease, cauda equine compression, radiculopathy, infections, or cancer in the lumbar spine. MRI provides high quality multiplanar images of organs and structures within the body without the use of x-rays or radiation. In the lumbar area where gonadal exposure may occur, MRI's lack of radiation is an advantage.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LUMBAR SPINE MRI:

For evaluation of neurologic deficits:
- With any of the following new neurologic deficits: lower extremity weakness; abnormal reflexes; abnormal sensory changes along a particular dermatome (nerve distribution) as documented on exam; evidence of Cauda Equina Syndrome; bowel or bladder dysfunction; new foot drop.

For evaluation of chronic back pain with any of the following:
- Failure of conservative treatment* for at least six (6) weeks within the last six (6) months
- With progression or worsening of symptoms during the course of conservative treatment*
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality

For evaluation of new onset of back pain:
- Failure of conservative treatment*, for at least six (6) weeks
- With progression or worsening of symptoms during the course of conservative treatment*
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality

For evaluation of trauma or acute injury within past 72 hours:
- Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
- With progression or worsening of symptoms during the course of conservative treatment*.

For evaluation of known tumor, cancer or evidence of metastasis:
- For staging of known tumor.
- For follow-up evaluation of patient undergoing active treatment.
- Presents with new signs or symptoms (e.g., laboratory and/or imaging findings) of new tumor or change in tumor
- Presents with radiculopathy, muscle weakness, abnormal reflexes, and/or sensory changes along a particular dermatome (nerve distribution).
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality
- With evidence of metastasis on bone scan or previous imaging study.
- With no imaging/restaging within the past ten (10) months.

For evaluation of suspected tumor:
- Prior abnormal or indeterminate imaging that requires further clarification.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance – Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected infection, abscess, or inflammatory disease:
- As evidenced by signs/symptoms, laboratory or prior imaging findings.

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, lymphoma:
- As evidenced by signs/symptoms, laboratory or prior imaging findings.

For post-operative / procedural evaluation of surgery or fracture occurring within past six (6) months:
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.
- Changing neurologic status post-operatively.
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a spinal abnormality.
- Surgical infection as evidenced by signs/symptoms, laboratory or prior imaging findings.
- Delayed or non-healing fracture as evidenced by signs/symptoms, laboratory or prior imaging findings.
- Continuing or recurring symptoms of any of the following neurological deficits: Lower extremity weakness, lower extremity asymmetric reflexes.

Other indications for a Lumbar Spine MRI:
- For preoperative evaluation.
- Tethered cord, known or suspected spinal dysraphism.
- For evaluation of suspicious sacral dimples associated with lesions such as hairy patches or hemangiomas.
- Ankylosing Spondylitis: For diagnosis when suspected as a cause of back or sacroiliac pain and completion of the following initial evaluation:
 - History of back pain associated with morning stiffness
 - Sedimentation rate and/or C-reactive protein
 - HLA B27
 - Non-diagnostic or indeterminate x-ray
- Known arnold-chiari syndrome.
COMBINATION OF STUDIES WITH LUMBAR SPINE MRI:

Cervical/Thoracic/Lumbar MRIs:
- Any combination of these for scoliosis survey in infant/child.
- Any combination of these for spinal survey in patient with metastasis.
- For evaluation of spinal abnormalities associated with Chiari Malformation.

ADDITIONAL INFORMATION RELATED TO LUMBAR SPINE MRI:

 MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

Conservative Therapy (spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
- Information provided on exercise prescription/plan AND
- Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute "inability to complete” HEP).

MRI and Back Pain – MRI is the initial imaging modality of choice in the evaluation of complicated low back pain. Contrast administration may be used to evaluate suspected inflammatory disorders, e.g., discitis, and it is useful in evaluating suspected malignancy. Radiculopathy, disease of the nerve roots, is the most common indication for MRI of patients with low back pain. The nerve roots become irritated and inflamed, due to direct pressure from degenerative changes in the lumbar spine, creating pain and numbness. Symptoms of radiculopathy also include muscle weakness. MRI is indicated for this condition if the symptoms do not improve after conservative treatment over six weeks. MRI is also preformed to evaluate Cauda equina syndrome, severe spinal compression.

Tethered spinal cord syndrome – a neurological disorder caused by tissue attachments that limit the movement of the spinal cord with the spinal column. Although this condition is rare, it can continue undiagnosed into adulthood. The primary cause is myelomeningocele and lipomyelomeningocele; the following are other associations that vary in severity of symptoms and treatment.
- Dermal sinus tract (a rare congenital deformity)
- Diastematomyelia (split spinal cord)
- Lipoma
- Tumor
- Thickened/tight filum terminale (a delicate filament near the tailbone)
- History of spine trauma/surgery
- Arnold Chiari Malformation
Magnetic resonance imaging (MRI) can display the low level of the spinal cord and a thickened filum terminale, the thread-like extension of the spinal cord in the lower back. Treatment depends upon the underlying cause of the tethering. If the only abnormality is a thickened, shortened filum then limited surgical treatment may suffice.

Back Pain with Cancer History - Radiographic (x-ray) examination should be performed in cases of back pain when a patient has a cancer history. This can make a diagnosis in many cases. This may occasionally allow for selection of bone scan in lieu of MRI in some cases. When radiographs do not answer the clinical question, then MRI may be appropriate after a consideration of conservative care.

For example, bone metastases occur in a minority of all breast cancer patients. Low stage breast cancer patients are very unlikely to have bone metastases (Coleman RE et al). Radiographic (X-ray) evaluation prior to MRI is appropriate. A trial of conservative care in back pain is also indicated and appropriate in these low stage patients.

Advanced stage breast cancer patients do develop bone metastases in a slight majority of cases (Coleman RE et al). Back pain in advanced stage breast cancer patients should still be initially evaluated with X-ray (which has the chance of demonstrating cause of pain, or identifying multiple metastases, and may change the subsequent imaging choice for optimal staging). However, these patients should, in most cases, not undergo a trial of conservative care.

REFERENCES

INTRODUCTION:

Application of spinal magnetic resonance angiography (MRA) allows for more effective and noninvasive screening for vascular lesions than magnetic resonance imaging (MRI) alone. It may improve characterization of normal and abnormal intradural vessels while maintaining good spatial resolution. Spinal MRA is used for the evaluation of spinal arteriovenous malformations, cervical spine fractures and vertebral artery injuries.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR SPINAL CANAL MRA:

- For the evaluation of spinal arteriovenous malformation (AVM).
- For the evaluation of a cervical spine fracture.
- For the evaluation of known or suspected vertebral artery injury.

ADDITIONAL INFORMATION RELATED TO SPINAL CANAL MRA:

Request for a follow-up study – A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

Spinal Arteriovenous Malformations (AVMs) – Spinal cord arteriovenous malformations are comprised of snarled tangles of arteries and veins which affect the spinal cord. They are fed by spinal cord arteries and drained by spinal cord veins. Magnetic resonance angiography (MRA) can record the pattern and velocity of blood flow through vascular lesions as well as the flow of cerebrospinal fluid throughout the spinal cord. MRA defines the vascular malformation and may assist in determining treatment.

Cervical Spine Fracture – The American College of Radiology (ACR) appropriateness criteria scale indicates that MRA of the neck is most appropriate for suspected acute cervical spine trauma and where clinical or imaging findings suggest arterial injury.

Vertebral Artery Injury – Two-dimensional time-of-flight (2D TOF) magnetic resonance angiography (MRA) is used for detecting vertebral artery injury in cervical spine trauma patients.
REFERENCES

INTRODUCTION:

Computed tomographic angiography (CTA) is used in the evaluation of many conditions affecting the veins and arteries of the pelvis or lower extremities. It is not appropriate as a screening tool for asymptomatic patients without a previous diagnosis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR PELVIS CTA:

For evaluation of known or suspected vascular disease:
- For known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- For suspected pelvic extent of aortic dissection.
- Evaluation of suspected or known aneurysms limited to the pelvis or in evaluating pelvic extent of aortic aneurysm**
 - Suspected or known iliac artery aneurysm (>2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating iliac artery aneurysm >2.5cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of pelvic pain.
 - Follow up of iliac artery aneurysm: Six month if between 3.0-3.5 cm and if stable follow yearly. If >3.5cm, <six month follow up (and consider intervention)
- Suspected retroperitoneal hematoma or hemorrhage.
- Venous thrombosis if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- Pelvic vein thrombosis or thrombophlebitis.
- For evaluation of suspected pelvic vascular disease when findings on ultrasound are indeterminate.

Pre-operative evaluation:
- Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.

Post-operative or post-procedural evaluation:
- Evaluation of endovascular/interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in peritoneal cavity.
• Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA).
 - Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
 - Asymptomatic at six (6) month intervals, for two (2) years.
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
• Follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Chest CTA/Pelvis CTA combo:
- For evaluation of extensive vascular disease involving the chest and abdominal cavities such as aortic dissection, vasculitic diseases such as Takayasu's arteritis, significant post-traumatic or post-procedural vascular complications, etc.
- For preoperative or preprocedural evaluation such as transcatheter aortic valve replacement (TAVR).

ADDITIONAL INFORMATION RELATED TO PELVIS CTA:

Abd/Pelvis CTA & Lower Extremity CTA Runoff Requests: Only one authorization request is required, using CPT Code 75635 Abdominal Arteries CTA. This study provides for imaging of the abdomen, pelvis and both legs. The CPT code description is CTA aorto-iliofemoral runoff: abdominal aorta and bilateral ilio-femoral lower extremity runoff.

Bruit: blowing vascular sounds heard over partially occluded blood vessels. Abdominal bruises may indicate partial obstruction of the aorta or other major arteries such as the renal, iliac, or femoral arteries. Associated risks include but are not limited to: renal artery stenosis, aortic aneurysm, atherosclerosis, AVM, or coarctation of aorta.

Periopheral Artery Disease (PAD) – Before the availability of computed tomography angiography (CTA), peripheral arterial disease was evaluated using CT and only a portion of the peripheral arterial tree could be imaged. Multi-detector row CT (MDCT) overcomes this limitation and provides an accurate alternative to CT and is a cost-effective diagnostic strategy in evaluating PAD.

Follow-up of asymptomatic incidentally-detected iliac artery aneurysms:
- <3.0 cm: rarely rupture, grow slowly, follow-up not generally needed
- 3.0-3.5 cm: followed up initially at 6 months
 - if stable, then annual imaging
- >3.5 cm: greater likelihood of rupture
 - <6 month follow up
 - consider intervention

REFERENCES

CPT Codes: 72192, 72193, 72194

INTRODUCTION:
CT provides direct visualization of anatomic structures in the abdomen and pelvis and is a fast imaging tool used to detect and characterize disease involving the abdomen and pelvis. Pelvic imaging begins at the iliac crests through pubic symphysis. It has an ability to demonstrate abnormal calcifications or fluid/gas patterns in the viscera or peritoneal space.

In general, ionizing radiation from CT should be avoided during pregnancy. Ultrasound is clearly a safer imaging option and is the first imaging test of choice, although CT after equivocal ultrasound has been validated for diagnosis. Clinician should exercise increased caution with CT imaging in children, pregnant women and young adults. Screening for pregnancy as part of a work ‘up’ is suggested to minimize the number of unexpected radiation exposures for women of childbearing age.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR PELVIS CT:
For known or suspected prostate cancer and for recurrence workup:
- Initial treatment by radical prostatectomy:
 - Failure of PSA to fall to undetectable levels or PSA detectable and rising on at least 2 subsequent determinations.
- Initial treatment radiation therapy:
 - Post-RT rising PSA or positive digital exam and is candidate for local therapy.
- In patients without confirmed diagnosis of prostate cancer (with persistently elevated or rising PSA, prior negative prostate biopsy and MRI is contraindicated.
- Prostatic cancer with:
 - PSA greater than twenty (20).
 - Gleason score of seven (7) or greater.

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:
- Initial evaluation of suspicious masses/tumors found only in the pelvis by physical exam or imaging study, such as Ultrasound (US).
- Surveillance: One follow-up exam to ensure no suspicious change has occurred in a tumor in the pelvis. No further surveillance CT unless tumor(s) are specified as highly suspicious, or change was found on last follow-up.

Evaluation of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as Ultrasound (US):
- Initial staging of known cancer
 - All cancers, excluding the following:
 - Basal Cell Carcinoma of the skin,
 - Melanoma without symptoms or signs of metastasis.
• Three (3) month follow-up of known pelvic cancer undergoing active treatment within the past year.
• Six (6) month follow-up of known pelvic cancer undergoing active treatment within the past year.
• Follow-up of known cancer of patient undergoing active treatment within the past year.
• Known cancer with suspected pelvis metastasis based on a sign, symptom or an abnormal lab value.
• Cancer surveillance: Active monitoring for recurrence as clinically indicated

For evaluation of enlargement of organ:
• For the evaluation of an organ enlargement such as uterus or ovaries as evidenced by physical examination or confirmed on any previous imaging study.

For evaluation of suspected infection or inflammatory disease:
• Suspected acute appendicitis (or severe acute diverticulitis) if pelvic pain and tenderness to palpation is present, with at LEAST one of the following:
 o WBC elevated
 o Fever
 o Anorexia or
 o Nausea and vomiting.
• Suspected complications of diverticulitis (known to be limited to the pelvis by prior imaging) with pelvic pain or severe tenderness, not responding to antibiotic treatment.
• Suspected infection in the pelvis

For evaluation of known infection or inflammatory disease follow up:
• Complications of diverticulitis with severe pelvic pain or severe tenderness or mass, not responding to antibiotic treatment, (prior imaging study is not required for diverticulitis diagnosis).
• Known inflammatory bowel disease, (Crohn’s or Ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation.
• Any known infection that is clinically suspected to have created an abscess in the pelvis.
• Any history of fistula limited to the pelvis that requires re-evaluation, or is suspected to have recurred.
• Abnormal fluid collection seen on prior imaging that needs follow-up evaluation.
• Known infection in the pelvis.

For evaluation of known or suspected vascular disease (e.g., aneurysms, hematomas):
• Evidence of vascular abnormality identified on imaging studies.
• Evaluation of suspected or known aneurysms limited to the pelvis or in evaluating pelvic extent of aortic aneurysm
 o Suspected or known iliac artery aneurysm >2.5 cm AND equivocal or indeterminate ultrasound results OR
 o Prior imaging (e.g. ultrasound) demonstrating iliac artery aneurysm >2.5cm in diameter OR
 o Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of pelvic pain.
 o Follow up of iliac artery aneurysm: Six month if between 3.0-3.5 cm and if stable follow yearly.
 If >3.5cm, <six month follow up (and consider intervention)
• Scheduled follow-up evaluation of aorto/iliac endograft or stent.
 o Asymptomatic at six (6) month intervals, for two (2) years
 o Symptomatic/complications related to stent graft – more frequent imaging may be needed.
• Suspected retroperitoneal hematoma or hemorrhage.

For evaluation of trauma:
• For evaluation of trauma with lab or physical findings of pelvic bleeding.
• For evaluation of physical or radiological evidence of pelvis fracture.

Pre-operative evaluation:
• For pelvic surgery or procedure.

For post-operative/procedural evaluation:
• Follow-up of known or suspected post-operative complication involving the hips or the pelvis.
• A follow-up study to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• < 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated.

Other indications for Pelvic CT:
• Persistent pelvic pain not explained by previous imaging/procedure.
• Unexplained pelvic pain in patients seventy-five (75) years or older.
• Hernia with suspected complications.
• Ischemic bowel.
• Known or suspected aseptic/avascular necrosis of hip(s) and MRI is contraindicated after completion initial x-ray.
• Sacroilitis (infectious or inflammatory) after completion of initial x-ray and MRI is contraindicated.
• Sacroiliac joint dysfunction and MRI contraindicated:
 o Persistent back and/or sacral pain unresponsive to four (4) weeks of conservative treatment, received within the past six (6) months, including physical therapy or physician supervised home exercise plan (HEP).

Combination of studies with Pelvis CT:
• Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

If an Abdomen/Pelvis CT combo is indicated and the Abdomen CT has already been approved, then the Pelvis CT may be approved.

ADDITIONAL INFORMATION RELATED TO PELVIS CT:

Ultrasound should be considered prior to a request for Pelvis CT for the following evaluations:
• Evaluation or follow up of ovarian mass
• Repeat CT for aneurysm ordered by non-surgeon.

CT for organ enlargement - An abd/pelvis combo is most appropriate because it will demonstrate the kidneys and the ureters. Other organs may require an Abdomen CT or Pelvis CT only.

CT for suspected renal stones - An initial CT study is done to identify the size of the stone and rule out obstruction. *(7 mm is the key size: less than that size the expectation is that it will pass)* After the initial CT study for kidney stone is done, the stone can be followed by x-ray or US (not CT). If a second
exacerbation occurs/a new stone is suspected another CT would be indicated to access the size of stone and rule out obstruction.

CT Imaging for Renal Colic and Hematuria – Multidetector computed tomography (CT) is the modality of choice for the evaluation of the urinary tract. It is fast and it has good spatial resolution. It is superior to plain-film for imaging the renal parenchyma. CT protocols include: “stone protocol” for detecting urinary tract calculi, “renal mass protocol” for characterizing known renal masses and CT urography for evaluating hematuria. Non-contrast CT can be used for detecting most ureteral and renal stones but sometimes an intravenous contrast agent is needed to determine the relationship of the calculus to the opacified ureter. CT is an effective imaging examination for diagnosing hematuria caused by urinary tract calculi, renal tumors and urothelia tumors.

CT Imaging for Abdominal and Pelvic Aneurysms – Abdominal and pelvic aneurysms are usually asymptomatic and most are discovered during imaging studies ordered for other indications or, particularly in the abdomen, on physical examination as a pulsatile mass. If a pulsatile abdominal mass is found, abdominal ultrasonography is an inexpensive and noninvasive technique for examination. For further examination, CT may be performed to better define the shape and extent of the aneurysm and the local anatomic relationships of the visceral and renal vessels. CT has high level of accuracy in sizing aneurysms.

Follow-up of asymptomatic incidentally-detected iliac artery aneurysms:
- <3.0 cm: rarely rupture, grow slowly, follow-up not generally needed
- 3.0-3.5 cm: followed up initially at 6 months
 - if stable, then annual imaging
- >3.5 cm: greater likelihood of rupture
 - <6 month follow up
 - consider intervention

Combination request of Abdomen CT/Chest CT – A Chest CT will produce images to the level of L3. Documentation for combo is required.

Hematuria and CT Imaging of Urinary Tract – Multidetector CT urography is a first line of investigation in patients with hematuria due to its ability to display the entire urinary tract, including renal parenchyma, pelvicaliceal systems, ureters and bladder with a single imaging test. To evaluate hematuria, the urinary tract is assessed for both calculi and neoplasms of the kidney and or urothelium.

Helical CT of Prostate Cancer – Conventional CT is not useful in detecting prostate cancer as it does not allow direct visualization. Contrast-enhanced MRI is more useful in detecting prostate cancer. Helical CT of the prostate may be a useful alternative to MRI in patients with an increasing PSA level and negative findings on biopsy.

Prostate Cancer – For symptomatic patients and/or those with a life expectancy of greater than 5 years, a bone scan is appropriate for patients with T1 to T2 disease who also have a PSA greater than 20ng/mL or a Gleason score of 8 or higher. Patients with a T3 to T4 disease or symptomatic disease should also receive a bone scan. Pelvic computed tomography (CT) or magnetic resonance imaging (MRI) scanning is recommended if there is T3 or T4 disease, or T1 or T2 disease and a nomogram indicates that there is greater than 20% chance of lymph node involvement, although staging studies may not be cost effective until the chance of lymph node positively reaches 45%. Biopsy should be considered for further evaluation of suspicious nodal findings. For all other patients, no addition imaging is required for staging.
Pelvic Trauma and CT Imaging – Helical CT is useful in the evaluation of low or high flow vascular injuries in patients with blunt pelvic trauma. It provides detailing of fractures and position of fracture fragments along with the extent of diastasis of the sacroiliac joints and pubic symphysis. CT helps determine whether pelvic bleeding is present and can identify the source of bleeding. With CT, high flow hemorrhage can be distinguished from low flow hemorrhage aiding the proper treatment.

Bladder Cancer and CT Imaging – The diagnosis of upper tract transitional cell carcinoma is dependent on imaging. CT urography is increasingly being used in the imaging of the upper urinary tract in patients with bladder cancer. Multidetector CT scans are more accurate than the older ones and are used in the diagnosis, staging and surveillance of transitional cell carcinoma of the upper urinary tract.

Urinary Calculi and Reduced Radiation Dose – Studies have been performed to retrospectively determine the effect of 50% and 75% radiation dose reductions on sensitivity and specificity of CT for the detection of urinary calculi. Ciaschini et al found no significant differences between the examinations at 100% radiation dose and those at the reduced dosage for the detection of calculi greater than 3 mm.

REFERENCES

CPT Codes: 72195, 72196, 72197

INTRODUCTION:

Magnetic resonance imaging of the pelvis is a noninvasive technique for the evaluation, assessment of severity, and follow-up of diseases of the male and female pelvic organs. MRI provides excellent contrast of soft tissues and provides multiplanar and 3D depiction of pathology and anatomy. Patients undergoing MRI do not have exposure to ionizing radiation or iodinated contrast materials.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR PELVIC MRI:

For known or suspected prostate cancer and for recurrence workup:
- Initial treatment by radical prostatectomy:
 - Failure of PSA to fall to undetectable levels or PSA detectable and rising on at least 2 subsequent determinations.
- Initial treatment radiation therapy:
 - Post-RT rising PSA or positive digital exam and is candidate for local therapy.
- In patients without confirmed diagnosis of prostate cancer (with persistently elevated or rising PSA and prior negative biopsy).
- Prostatic cancer with:
 - PSA greater than twenty
 - Gleason score of seven or greater.

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:
- Initial evaluation of suspicious pelvic masses/tumors found only in the pelvis by physical exam or imaging study, such as Ultrasound (US).
- Surveillance: One follow-up exam to ensure no suspicious change has occurred in a tumor in the pelvis. No further surveillance unless tumor(s) are specified as highly suspicious, or change was found on last follow-up.

Evaluation of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as Ultrasound (US) and CT:
- Initial staging of known cancer:
 - All cancers, excluding the following:
 - Basal Cell Carcinoma of the skin,
 - Melanoma without symptoms or signs of metastasis.
- Three (3) month follow-up of known pelvic cancer undergoing active treatment within the past year.
- Six (6) month follow-up of known pelvic cancer undergoing active treatment within the past year.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected pelvic metastasis based on a sign, symptom or an abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated.
For evaluation of suspected infection or inflammatory disease:

- Suspected acute appendicitis (or severe acute diverticulitis) if pelvic pain and tenderness to palpation is present, with at LEAST one of the following:
 - WBC elevated
 - Fever
 - Anorexia or
 - Nausea and vomiting.
- Suspected complications of diverticulitis (known to be limited to the pelvis by prior imaging) with pelvic pain or severe tenderness, not responding to antibiotic treatment.
- Suspected infection in the pelvis.

For evaluation of known infection or inflammatory disease follow up:

- Complications of diverticulitis with severe abdominal pain or severe tenderness or mass, not responding to antibiotic treatment. (prior imaging study is not required for diverticulitis diagnosis).
- Known inflammatory bowel disease, (Crohn’s or ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation.
- Any known infection that is clinically suspected to have created an abscess in the pelvis.
- Any history of fistula limited to the pelvis that requires re-evaluation, or is suspected to have occurred.
- Abnormal fluid collection seen on prior imaging that needs follow-up evaluation.
- Known infection in the pelvis.

Pre-operative evaluation:
For pelvic surgery or procedure.

For post-operative/procedural evaluation:

- Follow-up of known or suspected post-operative complication involving the hips or the pelvis.
- A follow-up study to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indications for Musculoskeletal Pelvic MRI:

- Initial evaluation of suspicious mass/tumor of the bones, muscles or soft tissues of the pelvis found on an imaging study, and needing clarification, or found by physical exam and remains non-diagnostic after x-ray or ultrasound.
- Evaluation of suspected fracture and/or injury when initial imaging is inconclusive or needs further evaluation.
- For evaluation of known or suspected aseptic/avascular necrosis of hip(s).
- Sacroiliitis (infectious or inflammatory)
- Sacroiliac Joint Dysfunction:
 - Persistent back and/or sacral pain unresponsive to four (4) weeks of conservative treatment, received within the past six (6) months, including physical therapy or physician supervised home exercise plan (HEP).
- Persistent Pain:
 - For evaluation of persistent pain unresponsive to four (4) weeks of conservative treatment received within the past six (6) months.
- Pelvic floor failure:
 - For evaluation of incontinence and anatomical derangements including, but not limited to uterine prolapse, rectocele, cystocele.
For further evaluation of congenital anomalies of the sacrum and pelvis and initial imaging has been performed.

Athletic pubalgia:

For evaluation of persistent groin or symphysis pubis pain related to a suspected diagnosis of athletic pubalgia (sports hernia), when ordered by a general surgeon, orthopedic surgeon or sports medicine specialist, when x-rays are unrevealing.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:

- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine
- Cancer surveillance – Active monitoring for recurrence as clinically indicated.

Other Indications for a Pelvic MRI:

- For location or evaluation of undescended testes in adults and in children, including determination of location of testes, where ultrasound has been done previously.
- To provide an alternative to follow-up of an indeterminate pelvic CT when previous CT/Ultrasound was equivocal and needed to clarify a finding a CT could not.
- For evaluation and characterization of uterine and adnexal masses, (e.g., fibroids, ovaries, tubes and uterine ligaments), or congenital abnormality where ultrasound has been done previously.
- For evaluation of uterus prior to embolization.
- For evaluation of endometriosis.
- Prior to uterine surgery if there is abnormality suspected on prior ultrasound.
- For evaluation of known or suspected abnormality of the fetus noted on prior imaging and no prior pelvis MRI.

ADDITIONAL INFORMATION RELATED TO PELVIC MRI:

Conservative Therapy - Sacroiliac Joint Dysfunction should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (epidural, facet, bursal, and/or joint, not including trigger point, and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

Home Exercise Program (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

- Information provided on exercise prescription/plan AND
- Follow up with member with documentation provided regarding completion of HEP (after suitable 6 week period), or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

MRI and Undescended Testes – The most common genital malformation in boys is undescended testis. The timely management of undescended testis is important to potentially minimize the risk of infertility.
and less the risk of malignancy. MRI is used as a diagnostic tool in the detection of undescended testes and can reveal information for both anatomic and tissue characterization. It is noninvasive, non-ionizing, and can obtain multiplanar images.

MRI and Adnexal Masses – MRI is used in the evaluation of adnexal masses in pregnancy. It can identify and characterize different neoplastic and nonneoplastic abnormalities, e.g., exophytic leiomyoma, endometrioma, dermoid cyst, and ovarian edema. It is a useful adjunct when sonography is inconclusive in the evaluation of adnexal masses in pregnancy.

MRI and Endometriosis – MRI manifestations of endometriosis vary including endometrioma, peritoneal endometrial implant, adhesion and other rare features. The data obtained from imaging must be combined with clinical data to perform preoperative assessment of endometriosis.

MRI and Prostate Cancer – Although prostate cancer is the second leading cause of cancer in men, the majority of cases do not lead to a prostate cancer related death. Aggressive treatment of prostate cancer can have side effects such as incontinence, rectal injury and impotence. It is very important to do an evaluation which will assist in making decisions about therapy or treatment. MRI can non-invasively assess prostate tissue, functionally and morphologically. MRI evaluation may use a large array of techniques, e.g., T1-weighted images, T2-weighted images, and dynamic contrast enhanced T1-weighted images.

Prostate Cancer – For symptomatic patients and/or those with a life expectancy of greater than 5 years, a bone scan is appropriate for patients with T1 to T2 disease who also have a PSA greater than 20ng/mL or a Gleason score of 8 or higher. Patients with a T3 to T4 disease or symptomatic disease should also receive a bone scan. Pelvic computed tomography (CT) or magnetic resonance imaging (MRI) scanning is recommended if there is T3 or T4 disease, or T1 or T2 disease and a nomogram indicates that there is greater than 20% chance of lymph node involvement, although staging studies may not be cost effective until the chance of lymph node positively reaches 45%. Biopsy should be considered for further evaluation of suspicious nodal findings. For all other patients, no addition imaging is required for staging.

Men who suffer a biochemical recurrence following prostatectomy fall into two groups: (1) those whose PSA level fails to fall to undetectable levels after surgery, or (2) those who achieve an undetectable PSA after surgery with a subsequent detectable PSA level that increases on two or more laboratory determinations. Since PSA elevation alone does not necessary lead to clinical failure, the workup for both of these groups focuses on the assessment of distant metastasis. The specific tests depend on the clinical history, but potentially include a bone scan, biopsy, PSA doubling time assessment, CT/MRI or radioimmunologic scintigraphy, (i.e. ProstaScint scan). Bone scans are appropriate when patients develop symptoms or when the PSA level is increasing rapidly. In one study, the probability of a positive bone scan for a patient not on ADT after radical prostatectomy was less then 5% unless the PSA increased to 40 to 45 ng/mL.

Further work up is indicated in patients who are considered candidates for local therapy. These patients include those with original clinical stage T1-2, a life expectancy of greater than 10 years, and a current PSA of less than 10ng/mL. Work up includes a prostate biopsy, bone scan and additional tests as clinically indicated such as abdominal/pelvic CT, MRI or radioimmunologic scintigraphy. (i.e. ProstaScint scan).
A negative biopsy following post-radiation biochemical recurrence poses clinical uncertainties. Observation, ADT, or enrolling in clinical trials is viable options. Alternatively, the patients may undergo more aggressive workup, such as repeat biopsy, MR spectroscopy, and or endorectal MRI.

Fusion imaging of multi-parametric magnetic resonance imaging (MRI) and trasrectal ultrasound (TRUS) to guide prostate biopsy is not covered.

MRI and Rectal Cancer – MRI is used in the evaluation of rectal cancer to visualize not only the intestinal wall but also the surrounding pelvic anatomy. MRI is an excellent imaging technique due to its high soft-tissue contrast, powerful gradient system, and high resolution. It provides accurate evaluation of the topographic relationship between lateral tumor extent and the mesorectal fascia.

REFERENCES

TOC

72198 – MR Angiography, Pelvis

CPT Codes: 72198

INTRODUCTION:
Magnetic resonance angiography (MRA) generates images of the arteries that can be evaluated for evidence of stenosis, occlusion or aneurysms. It is used to evaluate the arteries of the abdominal aorta and the renal arteries. Contrast enhanced MRA requires the injection of a contrast agent which results in very high quality images. It does not use ionizing radiation, allowing MRA to be used for follow-up evaluations.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR PELVIS MRA:

For evaluation of known or suspected pelvic vascular disease:

- For known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- For suspected pelvic extent of aortic dissection.
- Evaluation of suspected or known aneurysms limited to the pelvis or in evaluating pelvic extent of aortic aneurysm**
 - Suspected or known iliac artery aneurysm (>2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. Ultrasound) demonstrating iliac artery aneurysm >2.5cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of pelvic pain.
 - Follow up of iliac artery aneurysm: Six month if between 3.0-3.5 cm and if stable follow yearly. If >3.5 cm, <six month follow up (and consider intervention)
- Suspected retroperitoneal hematoma or hemorrhage.
- For evaluation of suspected pelvic vascular disease when findings on ultrasound are indeterminate.
- Venous thrombosis if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- Pelvic vein thrombosis or thrombophlebitis.

Preoperative evaluation:
- Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.

Postoperative or post-procedural evaluation:
- Evaluation of endovascular/ interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in peritoneal cavity.
Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA).

- Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
 - Asymptomatic at six (6) month intervals, for two (2) years.
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
- Follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO PELVIS MRA:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

Abdomen/Pelvis MRA & Lower Extremity MRA Runoff Requests: Two auth requests are required, one Abd MRA, CPT code 74185 and one for Lower Extremity MRA, CPT code 73725. This will provide imaging of the abdomen, pelvis and both legs.

Bruit: blowing vascular sounds heard over partially occluded blood vessels. Abdominal bruits may indicate partial obstruction of the aorta or other major arteries such as the renal, iliac, or femoral arteries. Associated risks include but are not limited to: renal artery stenosis, aortic aneurysm, atherosclerosis, AVF, or coarctation of aorta.

MRA and Chronic Mesenteric Ischemia – Contrast-enhanced MRA is used for the evaluation of chronic mesenteric ischemia including treatment follow-up. Chronic mesenteric ischemia is usually caused by severe atherosclerotic disease of the mesenteric arteries, e.g., celiac axis, superior mesenteric artery, inferior mesenteric artery. At least two of the arteries are usually affected before the occurrence of symptoms such as abdominal pain after meals and weight loss. MRA is the technique of choice for the evaluation of chronic mesenteric ischemia in patients with impaired renal function.

MRA and Abdominal Aortic Aneurysm Repair – MRA may be performed before endovascular repair of an abdominal aortic aneurysm. Endovascular repair of abdominal aortic aneurysm is a minimally invasive alternative to open surgical repair and its success depends on precise measurement of the dimensions of the aneurysm and vessels. This helps to determine selection of an appropriate stent-graft diameter and length to minimize complications such as endoleakage. MRA provides images of the aorta and branches in multiple 3D projections and may help to determine the dimensions needed for placement of an endovascular aortic stent graft. MRA is noninvasive and rapid and may be used in patients with renal impairment.

REFERENCES

INTRODUCTION:
Computed tomography (CT) may be used for the diagnosis, evaluation and management of conditions of the hand, wrist, elbow and shoulder. CT is not usually the initial imaging test, but is performed after standard radiographs. CT is used for preoperative evaluation, or to evaluate specific abnormalities of the bones, joints and soft tissues of the upper extremities.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR UPPER EXTREMITY CT (HAND, WRIST, ARM, ELBOW OR SHOULDER) (plain radiographs must precede CT evaluation):

Evaluation of suspicious mass/tumor (unconfirmed cancer diagnosis):
- Initial evaluation of suspicious mass/tumor found on an imaging study and needing clarification or found by physical exam and remains non-diagnostic after x-ray or ultrasound is completed.
- Suspected tumor size increase or recurrence based on a sign, symptom, imaging study or abnormal lab value.
- Surveillance: One follow-up exam if initial evaluation is indeterminant and lesion remains suspicious for cancer. No further surveillance unless tumor is specified as highly suspicious, or change was found on last imaging.

Evaluation of known cancer:
- Initial staging of known cancer in the upper extremity.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected upper extremity metastasis based on a sign, symptom, imaging study or abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated

For evaluation of known or suspected infection or inflammatory disease: (e.g. osteomyelitis) and MRI is contraindicated or cannot be performed:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- With abnormal physical, laboratory, and/or imaging findings.
- Known or suspected (based upon initial workup including imaging) septic arthritis or osteomyelitis.

For evaluation of suspected (AVN) avascular necrosis (e.g., aseptic necrosis) and MRI is contraindicated or cannot be performed:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.

For evaluation of suspected or known auto immune disease, (e.g. rheumatoid arthritis) and MRI is contraindicated or cannot be performed:
- Known or suspected auto immune disease and non-diagnostic findings on prior imaging.

For evaluation of known or suspected fracture and/or injury:
• Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
• Suspected fracture when imaging is negative or equivocal.
• Determine position of known fracture fragments/dislocation.

For evaluation of persistent pain and initial imaging (e.g. x-ray) has been performed:
• Chronic (lasting 3 months or greater) pain and/or persistent tendinitis unresponsive to conservative treatment*, within the last 6 months which include medical therapy (may include physical therapy or chiropractic treatments) and/or physician supervised exercise** of at least four (4) weeks, OR
• With progression or worsening of symptoms during the course of conservative treatment.

Pre-operative evaluation

Post-operative/procedural evaluation:
• When imaging, physical, or laboratory findings indicate joint infection, delayed or non-healing, or other surgical/procedural complications.
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention, or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for an Upper Extremity (Hand, Wrist, Arm, Elbow, or Shoulder) CT:
• Abnormal bone scan and x-ray is non-diagnostic or requires further evaluation.
• CT arthrogram and MRI is contraindicated or cannot be performed.
• To assess status of osteochondral abnormalities including osteochondral fractures, osteochondritis dissecans, treated osteochondral defects where physical or imaging findings suggest its presence and MRI is contraindicated or cannot be performed.

Additional indications for Shoulder CT:
• For any evaluation of patient with shoulder prosthesis or other implanted metallic hardware where prosthetic loosening or dysfunction is suspected on physical examination or imaging.
• Evaluation of recurrent dislocation and MRI is contraindicated or cannot be performed.
• For evaluation of brachial plexus dysfunction (brachial plexopathy/thoracic outlet syndrome) and MRI is contraindicated or cannot be performed.
• For evaluation of known or suspected impingement, rotator cuff tear, or labral tear (SLAP lesion, Bankart lesion) when ordered by orthopedic specialist and MRI is contraindicated or cannot be performed.
• Known or suspected impingement or when impingement test is positive and is ordered by orthopedic surgeon and MRI is contraindicated or cannot be performed.
• Impingement or rotator cuff tear indicated by positive Neer’s sign, Hawkings sign or drop sign and MRI is contraindicated or cannot be performed.
• Status post prior rotator cuff repair with suspected re-tear and findings on prior imaging are indeterminate and MRI is contraindicated or cannot be performed.

When additional indications for Wrist CT and MRI are contraindicated or cannot be performed:
• For evaluation of suspected ligament injury with evidence of wrist instability on examination or evidence of joint space widening on x-ray
• For suspected TFCC (triangular fibrocartilage complex) injury when ordered by orthopedic specialist or primary care physician on behalf of the specialist.
ADDITIONAL INFORMATION RELATED TO UPPER EXTREMITY CT:

Conservative Therapy (musculoskeletal) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, injections (bursal, and/or joint, not including trigger point), and diathermy, can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program, and/or chiropractic care. **NOTE:** for joint and extremity injuries, part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

Home Exercise Program – (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

- Information provided on exercise prescription/plan AND
- Follow up with member with information provided regarding completion of HEP (after suitable 4 week period), or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. *(Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).*

CT to Evaluate Shoulder Pain – The initial work-up for chronic shoulder pain includes plain radiographs. When the diagnosis remains unclear, further testing including may include computed tomography. CT is the preferred imaging technique for evaluating bony disorders of the shoulders, e.g., arthritis, tumors, occult fractures, etc. CT may be useful in patients with suspected rotator cuff tears who cannot undergo magnetic resonance imaging (MRI).

Shoulder Dislocation – Glenoid bone loss occurs in anterior shoulder dislocation. Severe degrees of glenoid bone loss are shown on axial radiography, but it can be quantified more definitively using CT. This information is important as it helps to predict the likelihood of further dislocation and the need for bone augmentation surgery. The number of dislocations can not reliably predict the degree of glenoid bone loss: it is important to quantify glenoid bone loss, initially by arthroscopy and later by CT. In the CT examination, both glenoids can be examined simultaneously resulting in a comparison of the width of the glenoid in the dislocating shoulder and in the non-dislocating shoulder.

Shoulder fractures – CT may be used to characterize shoulder fractures when more information is need preoperatively. CT can show the complexity of the fracture, and the displacement and angulation.

CT and Wrist Fractures – CT is indicated for wrist fractures where there is fracture commination, displacement, or complex intraarticular extension. CT can provide a detailed evaluation of radiocarpal articular step-off and gap displacement which can predict the development of radiocarpal osteoarthritis. CT can be performed in several planes, providing soft-tissue and bone detail. CT is also useful in determining the position of known fracture fragments and in assessing the union or status of fracture healing.

CT for Preoperative Evaluation – Where more information is needed preoperatively, CT is used to demonstrate fracture complexity, displacement and angulation.

CT and Scaphoid Fractures – CT is accurate in depicting occult cortical scaphoid fractures. It may be used as a second choice diagnostic method when patients are clinically suspected of having a scaphoid fracture but radiographs are negative or equivocal.
CT and Avascular Necrosis Complicating Chronic Scaphoid Nonunion – Preoperative CT of a scaphoid nonunion may be helpful in identifying avascular necrosis and predicting subsequent fracture union. If the results of CT suggest avascular necrosis, treatment options may include vascularized bone grafts or limited wrist arthrodesis.

Occult Scaphoid Fractures – Usually the diagnosis of a scaphoid fracture of the wrist is based upon clinical presentation and conventional radiographs. However, a large percentage of patients with a high clinical probability of a scaphoid fracture have unremarkable radiographs. Computed tomography (CT) is another diagnostic tool for patients who have symptoms of a scaphoid fracture but have negative findings on conventional radiographs. Multidetector CT allows coverage of the whole wrist with excellent spatial resolution. It has been proved to be superior to MRI in the detection of cortical involvement of occult scaphoid fractures.

CT and Posttraumatic Elbow Effusions – Multidetector computed tomography (MDCT) may help to detect occult fractures of the elbow when posttraumatic elbow effusions are shown on radiographs without any findings of fracture. Effusions may be visualized on radiographs as fat pads, which can be elevated by the presence of fluid in the joint caused by an acute fracture. MDCT may be useful when effusions are shown on radiographs without a visualized fracture, but there is a clinical suspicion of a lateral condylar or radial head fracture.

CT and Avascular Necrosis – Sports such as racquetball and gymnastics may cause repeated microtrauma due to the compressive forces between the radial head and capitellum. Focal avascular necrosis and osteochondritis dissecans of the capitellum may result. CT may show the extent of subchondral necrosis and chondral abnormalities. The images may also help detect intraarticular loose bodies.

CT and Acute Osseous Trauma – Many elbow injuries result from repetitive microtrauma rather than acute trauma and the injuries are sometimes hard to diagnose. Non-displaced fractures are not always evident on plain radiographs. When fracture is suspected, CT may improve diagnostic specificity and accuracy.

CT and Wrist Tumor – Osteoma does not often occur in the wrist. Symptoms may resemble atypical tenosynovitis. Pain may seem to be related to an injury. CT may be used to evaluate a suspected tumor and may visualize a round lucency surrounded by a rim of sclerosis. CT can give details about the location of the tumor, relative to joints.

Upper Extremity Osteomyelitis and Septic Arthritis – CT helps to distinguish among the types of musculoskeletal infections. Its specific imaging features help identify the forms of infection in the bones and soft tissue. Osteomyelitis, a bone infection most commonly associated with an open fracture of direct trauma, is often not detected in the initial conventional radiographic evaluation because bone changes are not evident for 14-21 days after the onset of infection. CT is also used to help diagnose septic arthritis; CT features include joint effusion and bone erosions around the joint.

REFERENCES:

CPT Codes: 73206

INTRODUCTION:

Computed tomography angiography (CTA) can visualize blood flow in arterial and venous structures throughout the upper extremity using a computerized analysis of x-ray images. It is enhanced by contrast material that is injected into a peripheral vein to promote visualization. CTA is much less invasive than catheter angiography which involves injecting contrast material into an artery. CTA is less expensive and carries lower risks than catheter angiography.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR UPPER EXTREMITY CTA:

For assessment/evaluation of known or suspected vascular disease/condition:
- For evaluation of suspected vascular disease aneurysm, arteriovenous malformation, fistula, vasculitis, or intramural hematoma.
- For evaluation of Raynaud’s syndrome.
- For evaluation of vascular invasion or displacement by tumor.
- For evaluation of complications of interventional vascular procedures, e.g., pseudoaneurysms related to surgical bypass grafts, vascular stents, or stent-grafts.
- For evaluation of suspected upper extremity embolism or thrombosis.

Preoperative evaluations:
- For preoperative evaluation from known vascular disease/condition.

Post-operative/procedural evaluations:
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for Upper Extremity CTA:
- For evaluation of a dialysis graft.

ADDITIONAL INFORMATION RELATED TO UPPER EXTREMITY CTA:

CTA and Raynaud’s Syndrome – Raynaud’s syndrome is evidenced by episodic waxy pallor or cyanosis of the fingers caused by vasoconstriction of small arteries or arterioles in the fingers. It usually occurs due to a response to cold or to emotional stimuli. CTA may be used in the evaluation of Raynaud’s syndrome.

CTA and Dialysis Graft – The management of the hemodialysis access is important for patients undergoing dialysis. With evaluation and interventions, the patency of hemodialysis fistulas may be prolonged. In selected cases, CTA is useful in the evaluation of hemodialysis graft dysfunction due to its speed and high resolution. Rapid data acquisition during the arterial phase, improved visualization of small vessels and lengthened anatomic coverage increase the usefulness of CTA.
CTA and Stenosis or Occlusion: CTA of the central veins of the chest is used for the detection of central venous stenoses and occlusions. High-spatial resolution CTA characterizes the general morphology and degree of stenosis. Enlarged and well-developed collateral veins in combination with the non-visualization of a central vein may be indicative of chronic occlusion, whereas less-developed or absent collateral veins are suggestive of acute occlusions. A hemodynamically significant stenosis may be indicated by the presence of luminal narrowing with local collaterals.

REFERENCES

CPT Codes: 73218, 73219, 73220, 73221, 73222, 73223

INTRODUCTION:
Magnetic resonance imaging shows the soft tissues and bones. With its multiplanar capabilities, high contrast and high spatial resolution, it is an accurate diagnostic tool for affecting the joint and adjacent structures. MRI has the ability to positively influence clinicians’ diagnoses and management plans for patients with conditions such as primary bone cancer, fractures, and abnormalities in ligaments, tendons/cartilages, septic arthritis, and infection/inflammation.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR UPPER EXTREMITY MRI (HAND, WRIST, ARM, ELBOW or SHOULDER) (plain radiographs must precede MRI evaluation):

Evaluation of suspicious mass/tumor (unconfirmed cancer diagnosis):
- Initial evaluation of suspicious mass/tumor found on an imaging study and needing clarification, or found by physical exam and remains non-diagnostic after x-ray or ultrasound is completed.
- Suspected tumor size increase or recurrence based on a sign, symptom, imaging study or abnormal lab value.
- Surveillance: One follow-up exam if initial evaluation is indeterminate and lesion remains suspicious for cancer. No further surveillance unless tumor is specified as highly suspicious, or change was found on last imaging.

Evaluation of known cancer:
- Initial staging of known cancer in the upper extremity.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected upper extremity metastasis based on a sign, symptom, imaging study or abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated

For evaluation of known or suspected infection or inflammatory disease (e.g. osteomyelitis):
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- With abnormal physical, laboratory, and/or imaging findings.
- Known or suspected (based upon initial workup including x-ray) of septic arthritis or osteomyelitis.

For evaluation of suspected (AVN) avascular necrosis (i.e. aseptic necrosis):
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.

For evaluation of suspected or known autoimmune disease, (e.g. rheumatoid arthritis):
- Known or suspected autoimmune disease and non-diagnostic findings on prior imaging.

For evaluation of known or suspected fracture and/or injury:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
• Suspected fracture when imaging is negative or equivocal.
• Determine position of known fracture fragments/dislocation.

For evaluation of persistent pain and initial imaging (e.g. x-ray) has been performed:
• Chronic (lasting 3 months or greater) pain and/or persistent tendonitis unresponsive to conservative treatment*, within the last 6 months which include medical therapy (may include physical therapy or chiropractic treatments) and/or physician supervised exercise** of at least four (4) weeks, OR
• With progression or worsening of symptoms during the course of conservative treatment.

Pre-operative evaluation

Post-operative/procedural evaluation:
• When imaging, physical or laboratory findings indicate joint infection, delayed or non-healing or other surgical/procedural complications.
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for an Upper Extremity (Hand, Wrist, Arm, Elbow, or Shoulder) MRI:
• Abnormal bone scan and x-ray is non-diagnostic or requires further evaluation.
• MR arthrogram.
• To assess status of osteochondral abnormalities including osteochondral fractures, osteochondritis dissecans, treated osteochondral defects where physical or imaging findings suggest its presence.

Additional indications for Shoulder MRI:
• For evaluation of known or suspected impingement, rotator cuff tear, or labral tear (SLAP lesion, Bankart lesion).
• Known or suspected impingement or when impingement test is positive.
• Impingement or rotator cuff tear indicated by positive Neer’s sign, Hawkin’s sign or drop sign.
• Status post prior rotator cuff repair with suspected re-tear and findings on prior imaging are indeterminate.
• For evaluation of brachial plexus dysfunction (brachial plexopathy/thoracic outlet syndrome).
• For evaluation of recurrent dislocation.

Additional indications for Wrist MRI:
• For evaluation of suspected ligament injury with evidence of wrist instability on examination or evidence of joint space widening on x-ray
• For suspected TFCC (triangular fibrocartilage complex) injury.

ADDITIONAL INFORMATION RELATED TO UPPER EXTREMITY MRI

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

*Conservative Therapy: (musculoskeletal) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components such as rest, ice, heat, modified
activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, injections (bursal, and/or joint, not including trigger point), and diathermy, can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care. NOTE: for joint and extremity injuries, part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

**Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

- Information provided on exercise prescription/plan AND
- Follow up with member with information provided regarding completion of HEP (after suitable 4 week period), or inability to complete HEP due to physical reason i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

Rotator Cuff Tears – 3.0 Tesla MRI has been found valuable for the detection of partial thickness rotator cuff tendon tears and small rotator cuff tendon tears. It is especially useful in detecting the partial tears due to increased spatial resolution. Increased spatial resolution results in precise measurements of rotator cuff tendon tears in all 3 planes and it also reduces acquisition time which reduces motion artifacts. 3.0 Tesla makes it possible to adequately evaluate tendon edges and avoid under-estimation of tears. MRI is less invasive than MR arthrography and it is faster and less expensive. MRI may be useful in the selection of patients that may benefit from arthroscopic

MRI and Occult Fractures – Magnetic resonance imaging may help to detect occult fractures of the elbow when posttraumatic elbow effusions are shown on radiographs without any findings of fracture. Effusions may be visualized on radiographs as fat pads, which can be elevated by the presence of fluid in the joint caused by an acute fracture. MRI may be useful when effusions are shown on radiographs without a visualized fracture, but there is a clinical suspicion of a lateral condylar or radial head fracture.

MRI and Avascular Necrosis – Sports such as racquetball and gymnastics may cause repeated microtrauma due to the compressive forces between the radial head and capitellum. Focal avascular necrosis and osteochondritis dissecans of the capitellum may result. MRI can be used to evaluate the extent of subchondral necrosis and chondral abnormalities. The images may also help detect intraarticular loose bodies.

MRI and Acute Osseous Trauma – Many elbow injuries result from repetitive microtrauma rather than acute trauma and the injuries are sometimes hard to diagnose. Non-displaced fractures are not always evident on plain radiographs. When fracture is suspected, MRI may improve diagnostic specificity and accuracy. T1-weighted images can delineate morphologic features of the fracture.

MRI and Brachial Plexus – MRI is the only diagnostic tool that accurately provides high resolution imaging of the brachial plexus. The brachial plexus is formed by the cervical ventral rami of the lower cervical and upper thoracic nerves which arise from the cervical spinal cord, exit the bony confines of the cervical spine, and traverse along the soft tissues of the neck, upper chest, and course into the arms.

REFERENCES

CPT Codes: 73225

INTRODUCTION:

Magnetic resonance angiography (MRA) is a noninvasive alternative to catheter angiography for evaluation of vascular structures in the upper extremity. Magnetic resonance venography (MRV) is used to image veins instead of arteries. MRA and MRV are less invasive than conventional x-ray digital subtraction angiography.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR UPPER EXTREMITY MRA/MRV:

For assessment/evaluation of known or suspected vascular disease/condition:
- For evaluation of suspected vascular disease aneurysm, arteriovenous malformation, fistula, vasculitis, or intramural hematoma.
- For evaluation of Raynaud's syndrome.
- For evaluation of vascular invasion or displacement by tumor.
- For evaluation of complications of interventional vascular procedures, e.g., pseudoaneurysms related to surgical bypass grafts, vascular stents, or stent-grafts.
- For evaluation of suspected upper extremity embolism or thrombosis.

Preoperative evaluations:
- For preoperative evaluation from known vascular disease/condition.

Post-operative/procedural evaluations:
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO UPPER EXTREMITY MRA/MRV:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

Bruit(s): blowing vascular sounds heard over partially occluded blood vessels. Abdominal bruits may indicate partial obstruction of the aorta or other major arteries such as the renal, iliac, or femoral arteries. Associated risks include but are not limited to: renal artery stenosis, aortic aneurysm, atherosclerosis, AVM, Coarctation of aorta.

MRA/MRV and Raynaud’s Syndrome – Raynaud’s syndrome is evidenced by episodic waxy pallor or cyanosis of the fingers caused by vasoconstriction of small arteries or arterioles in the fingers. It usually
occurs due to a response to cold or to emotional stimuli. CTA may be used in the evaluation of Raynaud’s syndrome.

MRA/MRV and Stenosis or Occlusion – MRA of the central veins of the chest is used for the detection of central venous stenoses and occlusions. High-spatial resolution MRA characterizes the general morphology and degree of stenosis. Enlarged and well-developed collateral veins in combination with the non-visualization of a central vein may be indicative of chronic occlusion, whereas less-developed or absent collateral veins are suggestive of acute occlusions. A hemodynamically significant stenosis may be indicated by the presence of luminal narrowing with local collaterals.

REFERENCES

INTRODUCTION:

Plain radiographs are typically used as the first-line modality for assessment of lower extremity conditions. Computed tomography (CT) is used for evaluation of tumors, metastatic lesions, infection, fractures and other problems. Magnetic resonance imaging (MRI) is the first-line choice for imaging of many conditions, but CT may be used in these cases if MRI is contraindicated or unable to be performed.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LOWER EXTREMITY CT (FOOT, ANKLE, KNEE, LEG or HIP):

Evaluation of suspicious mass/tumor (unconfirmed cancer diagnosis):
- Initial evaluation of suspicious mass/tumor found on an imaging study and needing clarification or found by physical exam and remains non-diagnostic after x-ray or ultrasound is completed.
- Suspected tumor size increase or recurrence based on a sign, symptom, imaging study or abnormal lab value.
- Surveillance: One follow-up exam if initial evaluation is indeterminant and lesion remains suspicious for cancer. No further surveillance unless tumor is specified as highly suspicious, or change was found on last imaging.

Evaluation of known cancer:
- Initial staging of known cancer in the lower extremity.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected lower extremity metastasis based on a sign, symptom, imaging study or abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated

For evaluation of known or suspected infection or inflammatory disease (e.g. osteomyelitis) and MRI is contraindicated or cannot be performed:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- With abnormal physical, laboratory, and/or imaging findings.
- Known or suspected (based upon initial workup including imaging) septic arthritis or osteomyelitis.

For evaluation of suspected (AVN) avascular necrosis (e.g., aseptic necrosis, Legg-Calve-Perthes disease in children) and MRI is contraindicated or cannot be performed:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.

For evaluation of suspected or known auto immune disease, (e.g. Rheumatoid arthritis) and MRI is contraindicated or cannot be performed:
- Known or suspected auto immune disease and non-diagnostic findings on prior imaging.

For evaluation of known or suspected fracture and/or injury:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- Suspected fracture when imaging is negative or equivocal.
- Determine position of known fracture fragments/dislocation.

For evaluation of persistent pain, initial imaging (e.g. x-ray) has been performed and MRI is contraindicated or cannot be performed:
- Chronic (lasting 3 months or greater) pain and/or persistent tendinitis unresponsive to conservative treatment*, within the last 6 months which include · medical therapy (may include physical therapy or chiropractic treatments) and/or · physician supervised exercise** of at least four (4) weeks, OR
- With progression or worsening of symptoms during the course of conservative treatment.

Pre-operative evaluation.

Post-operative/procedural evaluation:
- When imaging, physical, or laboratory findings indicate joint infection, delayed or non-healing, or other surgical/procedural complications.
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention, or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for Lower Extremity (Foot, Ankle, Knee, Leg, or Hip) CT:
- Abnormal bone scan and x-ray is non-diagnostic or requires further evaluation.
- For evaluation of leg length discrepancy when physical deformities of the lower extremities would prevent standard modalities such as x-rays or a Scanogram from being performed. (Scanogram (CPT code 77073); bone length study is available as an alternative to lower extremity CT evaluation for leg length discrepancy).
- CT arthrogram and MRI is contraindicated or cannot be performed.
- To assess status of osteochondral abnormalities including osteochondral fractures, osteochondritis dissecans, treated osteochondral defects where physical or imaging findings suggest its presence and MRI is contraindicated or cannot be performed.

Additional indication specific for FOOT or ANKLE CT:
- Chronic (lasting 3 months or greater) pain in a child or an adolescent with painful rigid flat foot where imaging is unremarkable or equivocal or on clinician’s decision to evaluate for known or suspected tarsal coalition.
- Accompanied by physical findings of ligament damage such as an abnormal drawer test of the ankle or significant laxity on valgus or varus stress testing and/or joint space widening on x-ray, and MRI is contraindicated or cannot be performed.

Additional indications specific for KNEE CT and MRI is contraindicated or cannot be performed:
- Accompanied by blood in the joint (hemarthrosis) demonstrated by aspiration.
- Presence of a joint effusion.
- Accompanied by physical findings of a meniscal injury determined by physical examination tests (McMurray’s, Apley’s) or significant laxity on valgus or valgus stress tests.
- Accompanied by physical findings of anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) ligamental injury determined by the drawer test or the Lachman test.

Additional indications specific for HIP CT:
- For any evaluation of patient with hip prosthesis or other implanted metallic hardware where prosthetic loosening or dysfunction is suspected on physical examination or imaging.
• For evaluation of total hip arthroplasty patients with suspected loosening and/or wear or osteolysis or assessment of bone stock is needed.
• For evaluation of suspected slipped capital femoral epiphysis with non-diagnostic or equivocal imaging and MRI is contraindicated or cannot be performed.
• Suspected labral tear of the hip with signs of clicking and pain with hip motion especially with hip flexion, internal rotation and adduction which can also be associated with locking and giving way sensations of the hip on ambulation and MRI is contraindicated or cannot be performed.

ADDITIONAL INFORMATION RELATED TO LOWER EXTREMITY CT:

Conservative Therapy: (musculoskeletal) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, injections (bursal, and/or joint, not including trigger point), and diathermy, can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care. NOTE: for joint and extremity injuries, part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
• Information provided on exercise prescription/plan AND
• Follow up with member with information provided regarding completion of HEP (after suitable 4 week period), or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

CT and Ankle Fractures – One of the most frequently injured areas of the skeleton is the ankle. These injuries may include ligament sprains as well as fractures. A suspected fracture is first imaged with conventional radiographs in anteroposterior, internal oblique and lateral projections. CT is used in patients with complex ankle and foot fractures after radiography.

CT and Hip Trauma – Computed tomography is primarily used to evaluate acute trauma, e.g., acetabular fracture or hip dislocation. It can detect intraarticular fragments and associated articular surface fractures and it is useful in surgical planning.

CT and Knee Fractures – CT is used after plain films to evaluate fractures to the tibial plateau. These fractures occur just below the knee joint, involving the cartilage surface of the knee. Soft tissue injuries are usually associated with the fractures. The meniscus is a stabilizer of the knee and it is very important to detect meniscal injury in patients with tibial plateau fractures. CT of the knee with two-dimensional reconstruction in the sagittal and coronal planes may be performed for evaluation of injuries with multiple fragments and comminuted fractures. Spiral CT has an advantage of rapid acquisition and reconstruction times and may improve the quality of images of bone. Soft tissue injuries are better demonstrated with MRI.

CT and Knee Infections – CT is used to depict early infection which may be evidenced by increased intraosseous density or the appearance of fragments of necrotic bone separated from living bone by soft tissue or fluid density. Contrast-enhanced CT may help in the visualization of abscesses and necrotic tissue.
CT and Knee Tumors – CT complements arthrography in diagnosing necrotic malignant soft-tissue tumors and other cysts and masses in the knee. Meniscal and ganglion cysts are palpable masses around the knee. CT is useful in evaluations of the vascular nature of lesions.

CT and Legg-Calve-Perthes Disease (LPD) – This childhood condition is associated with an insufficient blood supply to the femoral head which is then at risk for osteonecrosis. Clinical signs of LPD include a limp with groin, thigh or knee pain. Flexion and adduction contractures may develop as the disease progresses and eventually movement may only occur in the flexion-extension plane. This condition is staged based on plain radiographic findings. CT scans are used in the evaluation of LPD and can demonstrate changes in the bone trabecular pattern. They also allow early diagnosis of bone collapse and sclerosis early in the disease where plain radiography is not as sensitive.

CT and Osteolysis – Since computed tomography scans show both the extent and the location of lytic lesions, they are useful to guide treatment decisions as well as to assist in planning for surgical intervention, when needed, in patients with suspected osteolysis after Total Hip Arthroplasty (THA).

CT and Tarsal Coalition – This is a congenital condition in which two or more bones in the mid-foot or hind-foot are joined. It usually presents during late childhood or late adolescence and is associated with repetitive ankle sprains. Mild pain, deep in the subtalar joint and limited range of motion is clinical symptoms. Tarsal coalition is detectable on oblique radiographs, but these are not routinely obtained at many institutions. Clinical diagnosis is not simple; it requires the expertise of skilled examiners. CT is valuable in diagnosing tarsal coalition because it allows differentiation of osseous from non-osseous coalitions and also depicts the extent of joint involvement as well as degenerative changes. It may also detect the overgrowth of the medial aspect of the talus that may be associated with talocalcaneal coalitions.

REFERENCES

INTRODUCTION:

Lower extremity computed tomography angiography (CTA) is an effective, noninvasive and robust imaging modality that is used in the assessment of symptomatic lower extremity vascular disease. It has excellent spatial resolution and shows accurate details of peripheral vasculature. CTA is an effective alternative to catheter-based angiography and allows accurate planning of open surgical and endovascular interventions.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LOWER EXTREMITY CTA:

For assessment/evaluation of suspected or known vascular disease/condition:
- Significant ischemia in the presence of ulcers/gangrene.
- Large vessel diseases, e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Arterial entrapment syndrome, e.g., peripheral artery disease (PAD).
- Venous thrombosis if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- Pelvic vein thrombosis or thrombophlebitis
- Abnormal preliminary testing (ankle/brachial index, ultrasound/doppler arterial evaluation) associated with significant symptoms of claudication with exercise.

Pre-operative evaluation:
- Evaluation of known peripheral vascular disease of the leg and ultrasound indicates significant disease and an indeterminate conclusion about whether the condition would be amenable to surgery.

Post-operative / procedural evaluation:
- Post-operative or interventional vascular procedure for luminal patency versus re-stenosis (due to atherosclerosis, thromboembolism, intimal hyperplasia and other causes) as well as complications such as pseudoaneurysms related to surgical bypass grafts and vascular stents and stent grafts.
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO LOWER EXTREMITY CTA:

Abd/Pelvis CTA & Lower Extremity CTA Runoff Requests: Abdominal Arteries CTA. This study provides for imaging of the abdomen, pelvis and both legs. The CPT code description is CTA aorto-iliofemoral runoff: abdominal aorta and bilateral ilio-femoral lower extremity runoff.

Peripheral Arterial Disease – Multi-detector CTA (MDCTA) is used in the evaluation of patients with peripheral arterial disease. It can be used to evaluate the patency after revascularization procedures. It is
the modality of choice in patients with intermittent claudication. A drawback is its hampered vessel assessment caused by the depiction of arterial wall calcifications, resulting in a decreased accuracy in severely calcified arteries.

Chronic Limb Threatening Ischemia - Assessment and promotion of blood flow through the calf arteries is very important in patients with chronic limb threatening ischemia. MDCTA allows for visualization of pedal vessels.

Surgical or Percutaneous Revascularization – CTA is accurate in the detection of graft-related complications, including stenosis and aneurismal changes. It can reveal both vascular and extravascular complications.

REFERENCES

CPT Codes: 73718, 73719, 73720, 73721, 73722, 73723

INTRODUCTION:

Magnetic resonance imaging shows the soft tissues and bones. With its multiplanar capabilities, high contrast and high spatial resolution, it is an accurate diagnostic tool for conditions affecting the joint and adjacent structures. MRI has the ability to positively influence clinicians' diagnoses and management plans for patients with conditions such as primary bone cancer, fractures, and abnormalities in ligaments, tendons/cartilages, septic arthritis, and infection/inflammation.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LOWER EXTREMITY MRI (FOOT, ANKLE, KNEE, LEG or HIP) (plain radiographs must precede MRI evaluation):

Evaluation of suspicious mass/tumor (unconfirmed cancer diagnosis):
- Initial evaluation of suspicious mass/tumor found on an imaging study, and needing clarification, or found by physical exam and remains non-diagnostic after x-ray or ultrasound is completed.
- Suspected tumor size increase or recurrence based on a sign, symptom, imaging study or abnormal lab value.
- Surveillance: One follow-up exam if initial evaluation is indeterminant and lesion remains suspicious for cancer. No further surveillance unless tumor is specified as highly suspicious, or change was found on last imaging.

Evaluation of known cancer:
- Initial staging of known cancer in the lower extremity.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected lower extremity metastasis based on a sign, symptom, imaging study or abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated.

For evaluation of known or suspected infection or inflammatory disease (e.g. osteomyelitis):
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- With abnormal physical, laboratory, and/or imaging findings.
- Known or suspected (based upon initial workup including x-ray) of septic arthritis or osteomyelitis.

For evaluation of suspected (AVN) avascular necrosis (i.e. aseptic necrosis, Legg-Calvé-Perthes disease in children):
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.

For evaluation of suspected or known auto immune disease, (e.g. rheumatoid arthritis):
- Known or suspected auto immune disease and non-diagnostic findings on prior imaging.

For evaluation of known or suspected fracture and/or injury:
• Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
• Suspected fracture when imaging is negative or equivocal.
• Determine position of known fracture fragments/dislocation.

For evaluation of persistent pain and initial imaging (e.g. x-ray) has been performed:
• Chronic (lasting 3 months or greater) pain and/or persistent tendonitis unresponsive to conservative treatment, within the last 6 months which include medical therapy (may include physical therapy or chiropractic treatments) and/or physician supervised exercise of at least four (4) weeks, OR
• With progression or worsening of symptoms during the course of conservative treatment.

Pre-operative evaluation.

Post-operative/procedural evaluation:
• When imaging, physical or laboratory findings indicate joint infection, delayed or non-healing or other surgical/procedural complications.
• A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for a Lower Extremity (Foot, Ankle, Knee, Leg or Hip) MRI:
• Abnormal bone scan and x-ray is non-diagnostic or requires further evaluation.
• MR arthrogram.
• To assess status of osteochondral abnormalities including osteochondral fractures, osteochondritis dissecans, treated osteochondral defects where physical or imaging findings suggest its presence.

Additional indication specific for FOOT or ANKLE MRI
• Chronic (lasting 3 months or greater) pain in a child or adolescent with painful rigid flat foot where imaging is unremarkable or equivocal or on clinician’s decision to evaluate for known or suspected tarsal coalition. Do not add 6 mnts to this; don’t mention conservative care here.
• Accompanied by physical findings of ligament damage such as an abnormal drawer test of the ankle or significant laxity on valgus or varus stress testing and/or joint space widening on x-rays.

Additional indications specific for KNEE MRI:
• Accompanied by blood in the joint (hemarthrosis) demonstrated by aspiration.
• Presence of a joint effusion.
• For evaluation of suspected Baker’s cyst or posterior knee swelling with ultrasound requiring further evaluation.
• Accompanied by physical findings of a meniscal injury determined by physical examination tests (McMurray’s, Apley’s) or significant laxity on varus or valgus stress tests.
• Accompanied by physical findings of anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) ligamental injury determined by the drawer test or the Lachman test.

Additional indications specific for HIP MRI:
• For evaluation of suspected slipped capital femoral epiphysis with non-diagnostic imaging.
• For any evaluation of patient with hip prosthesis or other implanted metallic hardware where prosthetic loosening or dysfunction is suspected on physical examination or imaging.
• Suspected labral tear of the hip with signs of clicking and pain with hip motion especially with hip flexion, internal rotation and adduction which can also be associated with locking and giving way sensations of the hip on ambulation.

ADDITIONAL INFORMATION RELATED TO A LOWER EXTREMITY MRI:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

*Conservative Therapy (musculoskeletal) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, injections (bursal, and/or joint, not including trigger point), and diathermy, can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care. NOTE: for joint and extremity injuries, part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

**Home Exercise Program · (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

• Information provided on exercise prescription/plan AND
• Follow up with member with information provided regarding completion of HEP (after suitable 4 week period), or inability to complete HEP due to physical reason* i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

MRI and Knee Trauma - MRI is an effective means of evaluating internal derangements of the knee with a very high accuracy for detection of meniscal injury. On MRI of the knee, meniscal injury may appear “free-floating”, corresponding to a meniscal avulsion or detachment from the tibial plateau. The floating meniscus seen on MRI is a result of significant trauma. It may also be associated with significant ligamentous injury. The results of the MRI are valuable to the surgeon as he plans to reattach the meniscus to the tibial plateau.

MRI and Osteonecrosis – Osteonecrosis is a complication of knee surgery which may be accompanied by new or persistent pain after meniscal surgery. It can be detected by MRI with subcortical low signal intensity of T1-weighted images with or without central high signal intensity on T2-weighted images. Osteonecrosis can result in collapse of the articular surface.

MRI and Legg-Calve-Perthes Disease (LPD) - This childhood condition is associated with an insufficient blood supply to the femoral head which is then at risk for osteonecrosis. Clinical signs of LPD include a limp with groin, thigh or knee pain. Flexion and adduction contractures may develop as the disease progresses and eventually movement may only occur in the flexion-extension plane. This condition is staged based on plain radiographic findings. MRI is used in identifying the early stage of LPD when normal plain films are normal. It is also used in preoperative planning to diagnose “hinge abduction” (lateral side of the femoral head contacts the acetabular margin and femoral head does not slide as it should). However, MRI is not used as a standard diagnostic tool.
MRI and Septic Arthritis – Young children and older adults are the most likely to develop septic arthritis in the hip joint. Early symptoms include pain in the hip, groin, or thigh along with a limping gait and fever. It is sometimes hard to differentiate this condition from transient synovitis, a less serious condition with no known long-term sequelae. MRI may help in the differential diagnosis of these two conditions. Coronal T1-weighted MRI, performed immediately after contrast administration, can evaluate blood perfusion at the femoral epiphysis.

MRI and Septic Arthritis – Young children and older adults are the most likely to develop septic arthritis in the hip joint. Early symptoms include pain in the hip, groin, or thigh along with a limping gait and fever. It is sometimes hard to differentiate this condition from transient synovitis, a less serious condition with no known long-term sequelae. MRI may help in the differential diagnosis of these two conditions. Coronal T1-weighted MRI, performed immediately after contrast administration, can evaluate blood perfusion at the femoral epiphysis.

MRI and Slipped Capital Femoral Epiphysis – This condition, where the femoral head is displaced in relation to the femoral neck, is the most common hip disorder in adolescents and it is more common in obese children. Its symptoms include a limping gait, groin pain, thigh pain and knee pain. Most cases are stable and the prognosis is good with early diagnosis and treatment. Unstable slipped capital femoral epiphysis may lead to avascular necrosis. MRI is used for diagnosis of slipped capital femoral epiphysis. Its image can be oriented to a plane orthogonal to the plane of the physic to detect edema in the area of the physis.

MRI and Slipped Capital Femoral Epiphysis – This condition, where the femoral head is displaced in relation to the femoral neck, is the most common hip disorder in adolescents and it is more common in obese children. Its symptoms include a limping gait, groin pain, thigh pain and knee pain. Most cases are stable and the prognosis is good with early diagnosis and treatment. Unstable slipped capital femoral epiphysis may lead to avascular necrosis. MRI is used for diagnosis of slipped capital femoral epiphysis. Its image can be oriented to a plane orthogonal to the plane of the physic to detect edema in the area of the physis.

MRI and Tarsal Coalition – This is a congenital condition in which two or more bones in the midfoot or hindfoot are joined. It usually presents during late childhood or late adolescence and is associated with repetitive ankle sprains. Mild pain, deep in the subtalar joint and limited range of motion is clinical symptoms. Tarsal coalition is detectable on oblique radiographs, but these are not routinely obtained at many institutions. Clinical diagnosis is not simple; it requires the expertise of skilled examiners. MRI is valuable in diagnosing tarsal coalition because it allows differentiation of osseous from non-osseous coalitions and also depicts the extent of joint involvement as well as degenerative changes. It may also detect overgrowth of the medial aspect of the talus that may be associated with talocalcaneal coalitions.

MRI and Tarsal Coalition – This is a congenital condition in which two or more bones in the midfoot or hindfoot are joined. It usually presents during late childhood or late adolescence and is associated with repetitive ankle sprains. Mild pain, deep in the subtalar joint and limited range of motion is clinical symptoms. Tarsal coalition is detectable on oblique radiographs, but these are not routinely obtained at many institutions. Clinical diagnosis is not simple; it requires the expertise of skilled examiners. MRI is valuable in diagnosing tarsal coalition because it allows differentiation of osseous from non-osseous coalitions and also depicts the extent of joint involvement as well as degenerative changes. It may also detect overgrowth of the medial aspect of the talus that may be associated with talocalcaneal coalitions.

MRI and Ankle Fractures – One of the most frequently injured areas of the skeleton is the ankle. These injuries may include ligament sprains as well as fractures. A suspected fracture is first imaged with conventional radiographs in anteroposterior, internal oblique and lateral projections. MRI is normally not used in the initial imaging of suspected ankle fractures; MRI is more specific for ligamentous injuries. MRI may identify ankle ligament injuries associated with problematic subsets of ankle fracture.

REFERENCES

CPT Code: 73725

INTRODUCTION:

MRA is used for imaging arterial obstructive disease in the lower extremity. It is noninvasive and has little risk. It can image tibia and pedal arteries and can evaluate symptoms that occur after angiography.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LOWER EXTREMITY MRA/MRV:

For assessment/evaluation of suspected or known vascular disease/condition:
- Significant ischemia in the presence of ulcers/gangrene.
- Large vessel diseases, e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Arterial entrapment syndrome e.g. peripheral artery disease (PAD).
- Venous thrombosis if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- Pelvic vein thrombosis or thrombophlebitis
- Abnormal preliminary testing (ankle/brachial index, ultrasound/doppler arterial evaluation) associated with significant symptoms of claudication with exercise.

Pre-operative evaluation:
- Evaluation of known peripheral vascular disease of the leg and ultrasound indicates significant disease and an indeterminate conclusion about whether the condition would be amenable to surgery.

Post-operative / procedural evaluation:
- Post-operative or interventional vascular procedure for luminal patency versus re-stenosis (due to atherosclerosis, thromboembolism, intimal hyperplasia and other causes) as well as complications such as pseudoaneurysms related to surgical bypass grafts and vascular stents and stent grafts
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO LOWER EXTREMITY MRA/MRV:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.
MRA of Foot – Fast contrast-enhanced time-resolved 3D MR angiography is used in evaluating the arterial supply of the foot. It does not require the use of ionizing radiation and iodinated contrast medium and it is minimally invasive, safe, fast and accurate. Dorsalis pedis bypass surgery is an option for preserving a foot in a patient with arterial occlusive disease and MRA may be used in the preoperative evaluation. It can discriminate arteries from veins and can provide other key information, e.g., patency of the pedal arch, presence of collateral pathways, and depiction of target vessel suitable for surgical bypass. Time-resolved gadolinium enhanced MRA can identify injured fat pads in the foot before they have become ulcerated.

MRA and arterial obstructive disease – Catheter angiography is the standard of reference for assessing arterial disease but MRA with contrast enhanced media has gained acceptance and can image the entire vascular system. Contrast agents such as high dose gadolinium have been associated with the development of nephrogenic systemic fibrosis in patients with chronic renal insufficiency. Gadolinium dosage may be decreased without compromising image quality in high-spatial-resolution contrast-enhanced MRA of the lower extremity.

Bruit – blowing vascular sounds heard over partially occluded blood vessels. Abdominal bruits may indicate partial obstruction of the aorta or other major arteries such as the renal, iliac, or femoral arteries. Associated risks include but are not limited to: renal artery stenosis, aortic aneurysm, atherosclerosis, AVM, Coarctation of aorta.

REFERENCES

CPT Codes: 74150, 74160, 74170

INTRODUCTION:

CT provides direct visualization of anatomic structures in the abdomen and pelvis and is a fast imaging tool used to detect and characterize disease involving the abdomen and pelvis. Abdominal imaging begins at the diaphragm and extends to the umbilicus or iliac crests. It has an ability to demonstrate abnormal calcifications or fluid/gas patterns in the viscera or peritoneal space.

In general, ionizing radiation from CT should be avoided during pregnancy. Ultrasound is clearly a safer imaging option and is the first imaging test of choice, although CT after equivocal ultrasound has been validated for diagnosis. Clinician should exercise increased caution with CT imaging in children, pregnant women and young adults. Screening for pregnancy as part of a work-up is suggested to minimize the number of unexpected radiation exposures for women of childbearing age.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN CT:

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:
- Initial evaluation of suspicious masses/tumors found only in the abdomen by physical exam or imaging study, such as Ultrasound (US).
- Surveillance: One follow-up exam to ensure no suspicious change has occurred in a tumor in the abdomen. No further surveillance CT unless tumor(s) are specified as highly suspicious, or change was found on last follow-up.

Evaluation of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as Ultrasound (US):
- Initial staging of known cancer
 - All cancers, excluding the following:
 - Basal Cell Carcinoma of the skin,
 - Melanoma without symptoms or signs of metastasis.
- Three (3) month follow-up of known abdominal cancer undergoing active treatment within the past year.
- Six (6) month follow-up of known abdominal cancer undergoing active treatment within the past year.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected abdominal metastasis based on a sign, symptom or an abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated

For evaluation of an organ enlargement:
- For the evaluation of an organ enlargement such as splenomegaly or hepatomegaly as evidenced by physical examination or confirmed on any previous imaging study.
For evaluation of suspected infection or inflammatory disease:
- Suspected acute appendicitis (or severe acute diverticulitis) if abdominal pain and tenderness to palpation is present, with at LEAST one of the following:
 - WBC elevated
 - Fever
 - Anorexia or
 - Nausea and vomiting.
- Suspected peritonitis (from any cause) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, rigid abdomen, or
 - Severe tenderness to palpation present over entire abdomen.
- Suspected pancreatitis.
- Suspected inflammatory bowel disease (Crohn’s or ulcerative colitis) with abdominal pain, and persistent diarrhea, or bloody diarrhea.
- Follow up for peritonitis (from any cause) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, rigid abdomen, or
 - Severe tenderness to palpation present over entire abdomen.
- Suspected cholecystitis or retained gallstones with recent equivocal ultrasound.
- Suspected infection in the abdomen.

For evaluation of known infection or inflammatory disease follow up:
- Complications of diverticulitis with severe abdominal pain or severe tenderness or mass, not responding to antibiotic treatment, (prior imaging study is not required for diverticulitis diagnosis).
- Pancreatitis by history, (including pancreatic pseudocyst) with abdominal pain suspicious for worsening, or re-exacerbation.
- Known inflammatory bowel disease, (Crohn’s or ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation.
- Any known infection that is clinically suspected to have created an abscess in the abdomen.
- Any history of fistula limited to the abdomen that requires re-evaluation, or is suspected to have recurred.
- Abnormal fluid collection seen on prior imaging that needs follow-up evaluation.
- Hepatitis C/hepatoma evaluation with elevated alpha fetoprotein (AFP) and equivocal ultrasound results.
- Known infection in the abdomen.

For evaluation of known or suspected vascular disease (e.g., aneurysms or hematomas)**:
- Evidence of vascular abnormality seen on imaging studies.
- Evaluation of suspected or known aneurysm limited to abdomen or in evaluating abdominal extent of aortic aneurysm**
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating aneurysm >2.5cm cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of abdominal pain.
- Scheduled follow-up evaluation of aorto/femoral endograft or stent:
 - Asymptomatic at six (6) month intervals, for two (2) years
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed
- Suspected retroperitoneal hematoma or hemorrhage.
For evaluation of trauma:
- For evaluation of trauma with lab or physical findings of intra-abdominal bleeding limited to the abdomen.

Pre-operative evaluation:
- For abdominal surgery or procedure.

Post-operative/procedural evaluation:
- Follow-up of known or suspected post-operative complication involving only the abdomen.
- A follow-up study to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
- ≤5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance – Active monitoring for recurrence as clinically indicated

Other Indications for an Abdomen CT:
- Suspected adrenal mass based on diagnostic testing/imaging results, and/or a suspicious clinical presentation
- Persistent abdominal pain not explained by previous imaging/procedure
- Unexplained weight loss of 10% of body weight in two months (patient history is acceptable): with a second MD visit documenting some further decline in weight.
- Unexplained weight loss of 5% of body weight in six months confirmed by documentation to include the following
 - Related history and abdominal exam.
 - Chest x-ray
 - Abdominal Ultrasound
 - Lab tests, must include TSH
 - Colonoscopy if patient fifty plus (50+) years old
- Unexplained abdominal pain in patients seventy-five (75) years or older.
- Hernia with suspected complications.
- Ischemic bowel.
- Suspected complete or high-grade partial small bowel obstruction limited to the abdomen.

Combination of studies with Abdomen CT:
- Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

If an Abdomen/Pelvis CT combo is indicated and the Abdomen CT has already been approved, then the Pelvis CT may be approved.

ADDITIONAL INFORMATION RELATED TO ABDOMEN CT:

Combination studies for suspected appendicitis, peritonitis, diverticulitis, or inflammatory bowel disease (IBD):
- Combined Abdomen CT and Pelvis CT is usually ordered
• There are situations that a combo Abd/Pelvis CT was not ordered such as Pelvis CT previously approved and separate subsequent request for Abdomen CT, etc.

Ultrasound should be considered prior to a request for Abdomen CT for the following evaluations:

- Possible gallstones or abnormal liver function tests with gall bladder present.
- Evaluation of cholecystitis.
- Repeat CT studies of renal mass.
- Repeat CT Hepatic mass follow-up.
- Repeat CT for aortic aneurysm.

CT for organ enlargement - An Abd/pelvis combo is most appropriate because it will demonstrate the kidneys and the ureters. Other organs may require an Abdomen CT or Pelvis CT only.

CT for suspected renal stones - An initial CT study is done to identify the size of the stone and rule out obstruction. *(7 mm is the key size: less than that size is expected to pass)* After the initial CT study for kidney stone is done, the stone can be followed by x-ray or US (not CT). If a second exacerbation occurs/a new stone is suspected another CT would be indicated to access the size of stone and rule out obstruction.

CT Imaging for Renal Colic and Hematuria – Multidetector computed tomography (CT) is the modality of choice for the evaluation of the urinary tract. It is fast and it has good spatial resolution. It is superior to plain-film for imaging the renal parenchyma. CT protocols include: “stone protocol” for detecting urinary tract calculi, “renal mass protocol” for characterizing known renal masses and CT urography for evaluating hematuria. Non-contrast CT can be used for detecting most ureteral and renal stones but sometimes an intravenous contrast agent is needed to determine the relationship of the calculus to the opacified ureter. CT is an effective imaging examination for diagnosing hematuria caused by urinary tract calculi, renal tumors and urothelia tumors.

CT Imaging for Abdominal Aortic Aneurysms – The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal is 2.0cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter >/= 3.0 cm or dilatation of the aorta >/= 1.5 the normal diameter.1. Abdominal aortic aneurysms are usually asymptomatic and most are discovered during imaging studies ordered for other indications or on physical examination as a pulsatile abdominal mass. If a pulsatile abdominal mass is found, abdominal ultrasonography is an inexpensive and noninvasive technique for examination. For further examination, CT may be performed to better define the shape and extent of the aneurysm and the local anatomic relationships of the visceral and renal vessels. CT has high level of accuracy in sizing aneurysms.

Recommended intervals for initial follow-up imaging of ectatic aortas and Aabdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm):

- 2.5-2.9 cm 5yr
- 3.0-3.4 cm 3yr
- 3.5-3.9 cm..........2yr
- 4.0-4.4 cm......... 1yr
- 4.5-4.9 cm.......... 6 mo
- 5.0-5.5 cm.......... 3-6 mo

CTA is not always the study of choice to following an aneurysm. Clinicians interested in documenting size in asymptomatic patient without the concern for complications or branch vessel patency may chose a non contrast CT.
Combination request of Abdomen CT/Chest CT - A Chest CT will produce images to the level of L3. Documentation for combo is required.

REDUCING RADIATION EXPOSURE:

CT urography - Utilization of appropriate imaging techniques can reduce radiation exposure in performance of CT urography. Some protocols may result in 15-35 mSv of exposure. In the article by Chow, et al a technique involving administration of IV contrast in two boluses separated by a suitable time delay, allows nephrographic and excretory phases to be acquired in a single imaging pass. This allows for full non-contrast and contrast imaging to be obtained with two imaging passes.

Evaluation for appendicitis following clinical and laboratory evaluation - Sonography of the right upper quadrant and pelvis followed by graded compression and color Doppler sonography of the right lower quadrant was used by Gaitini and colleagues as the initial imaging study in 420 consecutive patients referred for emergency evaluation of acute appendicitis. This method correctly diagnosed acute appendicitis in 66 of 75 patients (88%) and excluded it correctly in 312 of 326 patients (96%). It was inconclusive in 19 patient (<5%). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 74.2%, 97%, 88%, 93%, and 92%, respectively and comparable to CT. Appropriate and timely diagnosis of acute appendicitis is needed. Negative laparotomy rates can range from 16% to 47% when based on clinical and laboratory data alone, while perforation rate can reach 35% when surgery is delayed. Appropriate initial imaging can lower the negative laparotomy rate to 6-10%. Ultrasound has a higher non-diagnostic rate (4%) vs. 0.8% for MDCT. In a prospective study operator experience and patient BMI did not affect diagnostic accuracy.

Consider the role of barium contrast studies - Effective doses for fluoroscopic SBFT (small bowel follow through) imaging ranged between 1.37-3.83 mSv for the right lower quadrant, central abdomen and pelvis, respectively. The findings by Jaffe, et al suggest a modified examination for Crohn’s disease indications would have lower effective doses than these. For MDCT the effective dose was 16.1 mSv. This indicates a 5 fold increase in the use of MDCT over SBFT.

For patients with Crohn’s disease, efforts should be made to minimize the number of CT examinations, decrease the CT dose or consider MR Enterography. Limitations of SBFT include partial evaluation of extramucosal and extraluminal disease, impaired evaluation of small bowel loops, especially those inaccessible in the deep pelvis.

Consider the role of capsule endoscopy - Retrospective comparison of capsule endoscopy (CE) to CT in patients with no evidence of a small-bowel stricture at barium examination was the focus of the article by Hara, et al. Studies were done for bleeding of unknown origin after colonoscopy and/or Gastroenterologist, inflammatory bowel disease or chronic abdominal pain.

CE was found to be more sensitive than CT examination in the 19 patients that underwent both. CE provides a complimentary and sensitive approach to the evaluation of the small bowel without radiation exposure. A negative examination does not completely rule out pathology.

Work up for distant metastasis in the initial evaluation of melanoma - Multiple studies, including the two authored by Miranda and Yancovitz below indicate that imaging studies, including Chest x-ray, Chest CT, Abdomen/Pelvis CT, Brain CT or Brain MRI in the absence of symptoms or findings of metastatic disease have extremely low yields (< 1%) in the survey evaluation of newly diagnosed melanoma, even in the presence of a positive sentinel node biopsy. The further work-up of the more common benign incidental finding (5-7%) on these studies lead to many more diagnostic tests, including surgery, which are seldom warranted.
Initial evaluation of abdominal aortic aneurysm (AAA) - Initial evaluation of AAA is accurately made by ultrasound. Risk of rupture in 6 years for an AAA < 4 cm is 1%. For a 4-5 cm AAA the risk of rupture increases to 1-3% per year and becomes 6-11% per year for AAA 5-7 cm in cross sectional diameter. >7% the risk of rupture goes to 7% per year.

Chronic contained ruptures should meet the following criteria: known abdominal aortic aneurysm, previous pain symptoms that may have resolved; stable hemodynamic status with a normal HCT, CT scans showing retroperitoneal hemorrhage, and pathologic confirmation of organized hematoma.

Initial evaluation of adnexal masses - MRI is a sensitive and specific modality for evaluation of adnexal masses in comparison to CT. While improved diagnostic accuracy of MRI was not shown to be statistically significant in the study there was a trend to more accurate results with MRI over multi-detector (16-row) CT.

Evaluation for recurrence of ovarian cancer metastases - MRI was noted to be superior to PET/CT (with non-contrast CT) in the detection of recurrence of ovarian cancer in a small study (36 patients).

Pre-operative evaluation of primary rectal cancer - Abdomen CT may detect hepatic and extra-hepatic disease relevant to decision making and prognosis in rectal cancer, but complete imaging through the pelvis does not add useful information. The area of the pelvis in pre-operative evaluation of rectal cancer is better defined by Pelvis MRI.

REFERENCES

INTRODUCTION:
Computed tomographic angiography (CTA) is used in the evaluation of many conditions affecting the veins and arteries of the abdomen and pelvis or lower extremities. This study (Abdomen/Pelvis CTA) is useful for evaluation of the arteries/veins in the peritoneal cavity (abdominal aorta, iliac arteries) while the Abdominal Arteries CTA is more useful for the evaluation of the abdominal aorta and the vascular supply to the legs. It is not appropriate as a screening tool for asymptomatic patients without a previous diagnosis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN/PELVIS CTA:

For evaluation of known or suspected abdominal vascular disease:
- For known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- For suspected aortic dissection.
- Evaluation of suspected or known aortic aneurysm**:
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating aneurysm > 2.5 cm in diameter and OR
 - Suspected complications of known aneurysm as evidenced by sign/symptoms such as new onset abdominal or pelvic pain.
- Suspected retroperitoneal hematoma or hemorrhage.
- Venous thrombosis (for CT Venogram) if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.

Pre-operative evaluation:
Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.

Post-operative or post-procedural evaluation:
- Evaluation of endovascular/interventional abdominal vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism and intimal hyperplasia.
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in the peritoneal cavity.
- Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA). Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
 - Asymptomatic at six (6) month intervals, for two (2) years.
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
- Follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Chest CTA/Abdomen/Pelvis CTA combo:
- For evaluation of extensive vascular disease involving the chest and abdominal cavities such as aortic dissection, vasculitic diseases such as Takayasu’s arteritis, significant post-traumatic or post-procedural vascular complications, etc.
- For preoperative or preprocedural evaluation such as transcatheter aortic valve replacement (TAVR).

ADDITIONAL INFORMATION RELATED TO ABDOMEN/PELVIS CTA:

Abd/Pelvis CTA & Lower Extremity CTA Runoff Requests: Only one authorization request is required, using CPT Code 75635 Abdominal Arteries CTA. This study provides for imaging of the abdomen, pelvis and both legs. The CPT code description is CTA aorto-iliofemoral runoff: abdominal aorta and bilateral ilio-femoral lower extremity runoff.

Bruit • blowing vascular sounds heard over partially occluded blood vessels. Abdominal bruits may indicate partial obstruction of the aorta or other major arteries such as the renal, iliac, or femoral arteries. Associated risks include but are not limited to: renal artery stenosis, aortic aneurysm, atherosclerosis, AVM, or coarctation of aorta.

Peripheral Artery Disease (PAD) – Before the availability of computed tomography angiography (CTA), peripheral arterial disease was evaluated using CT and only a portion of the peripheral arterial tree could be imaged. Multi-detector row CT (MDCT) overcomes this limitation and provides an accurate alternative to CT and is a cost-effective diagnostic strategy in evaluating PAD. Abdominal Arteries CTA (including runoff to the lower extremities) is the preferred study when evaluation of arterial sufficiency to the legs is part of the evaluation.

CTA and Abdominal Aortic Aneurysm – Endovascular repair is an alternative to open surgical repair of an abdominal aortic aneurysm. It has lower morbidity and mortality rates and is minimally invasive. In order to be successful, it depends on precise measurement of the aneurysm and involved vessels. CTA with 3D reconstruction is useful in obtaining exact morphologic information on abdominal aortic aneurysms. CTA is also used for the detection of postoperative complications of endovascular repair.

CTA and Abdominal Aortic Aneurysm ‒ The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal is 2.0 cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter ≥ 3.0 cm or dilatation of the aorta ≥ 1.5 the normal diameter.

Recommended intervals for initial follow-up imaging of ectatic aortas and abdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm):
- 2.5-2.9 cm: ……….5yr
- 3.0-3.4 cm:……… 3yr
- 3.5-3.9 cm:……… 2yr
- 4.0-4.4 cm:……… 1yr
- 4.5-4.9 cm:……… 6 mo
- 5.0-5.5 cm:…………3-6 mo

CTA and Renal Artery Stenosis – Renal artery stenosis is the major cause of secondary hypertension. It may also cause renal insufficiency and end-stage renal disease. Abdomen CTA (limiting evaluation to the
Aorta above the bifurcation and including the abdominal arteries) is the preferred study. Atherosclerosis is one of the common causes of this condition, especially in older patients with multiple cardiovascular risk factors and worsening hypertension or deterioration of renal function. CTA is used to evaluate the renal arteries and detect renal artery stenosis.

CTA and Thoracic Aorta Endovascular Stent-Grafts – CTA is an effective alternative to conventional angiography for postoperative follow-up of aortic stent grafts. It is used to review complications after thoracic endovascular aortic repair. CTA can detect luminal and extraluminal changes to the thoracic aortic after stent-grafting and can be performed efficiently with fast scanning speed and high spatial and temporal resolution.

REFERENCES

CPT Codes: 74175

INTRODUCTION:
Computed tomography angiography (CTA) generates images of the arteries that can be evaluated for evidence of stenosis, occlusion or aneurysms. It is used to evaluate the arteries of the abdominal aorta and the renal arteries. CTA uses ionizing radiation and requires the administration of iodinated contrast agent which is a potential hazard in patients with impaired renal function. Abdominal CTA is not used as a screening tool, e.g. evaluation of asymptomatic patients without a previous diagnosis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN CTA:

For evaluation of known or suspected abdominal vascular disease:
- For known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- For suspected aortic dissection.
- Evaluation of suspected or known aortic aneurysm **:
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating aneurysm > 2.5 cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by signs/symptoms such as new onset of abdominal or pelvic pain.
- Suspected retroperitoneal hematoma or hemorrhage.
- Suspected renal vein thrombosis in patient with known renal mass.
- For evaluation of suspected chronic mesenteric ischemia.
- Venous thrombosis if studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- For evaluation of portal venous system (hepatic portal system).
- For evaluation of known or suspected renal artery stenosis or resistant hypertension demonstrated by any of the following:
 - Unsuccessful control after treatment with 3 or more antihypertensive medication at optimal dosing.
 - Acute elevation of creatinine after initiation of an Angiotension Converting Enzyme inhibitor, (ACE inhibitor) or Angiotension receptor blocker, (ARB).
 - Asymmetric kidney size noted on ultrasound.
 - Onset of hypertension in a person younger than age 30 without any other risk factors or family history of hypertension.
 - New onset of hypertension after age 55 (>160/100).
 - Acute rise in blood pressure in a person with previously stable blood pressures.
 - Flash pulmonary edema without identifiable causes.
Malignant hypertension.

Pre-operative evaluation:
- Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.

Post-operative or post-procedural evaluation:
- Evaluation of endovascular/interventional abdominal vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in the peritoneal cavity.
- Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA).
 - Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
 - Asymptomatic at six (6) month intervals, for two (2) years.
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
- Follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Chest CTA/Abdomen CTA combo:
- For evaluation of extensive vascular disease involving the chest and abdominal cavities such as aortic dissection, vasculitic diseases such as Takayasu’s arteritis, significant post-traumatic or post-procedural vascular complications, etc.
- For preoperative or preprocedural evaluation such as transcatheter aortic valve replacement (TAVR).

ADDITIONAL INFORMATION RELATED TO ABDOMEN CTA:

Abd/Pelvis CTA & Lower Extremity CTA Runoff Requests: Only one authorization request is required, using CPT Code 75635 Abdominal Arteries CTA. This study provides for imaging of the abdomen, pelvis and both legs. The CPT code description is CTA aorto-iliofemoral runoff: abdominal aorta and bilateral ilio-femoral lower extremity runoff.

CTA and Abdominal Aortic Aneurysm:
Endovascular repair is an alternative to open surgical repair of an abdominal aortic aneurysm. It has lower morbidity and mortality rates and is minimally invasive. In order to be successful, it depends on precise measurement of the aneurysm and involved vessels. CTA with 3D reconstruction is useful in obtaining exact morphologic information on abdominal aortic aneurysms. CTA is also used for the detection of postoperative complications of endovascular repair.

Abdominal Aneurysms and general Guidelines for follow-up:
The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal aorta is 2.0 cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter \(\geq 3.0 \) cm or dilatation of the aorta \(\geq 1.5 \) the normal diameter. Initial evaluation of AAA is accurately made by ultrasound. Ultrasound can detect and size AAA, with the advantage of being relatively inexpensive, noninvasive and not require iodinate contrast. The limitations are that overlying bowel gas can obscure findings and the technique is operator dependent.

Recommended intervals for initial follow-up imaging of ectatic aortas and abdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm):
- 2.5-2.9 cm: \(\ldots \ldots \ldots \) 5yr

© 2017 Magellan Healthcare
Proprietary
Page 167 of 318
3.0-3.4 cm:........ 3yr
3.5-3.9 cm:..........2yr
4.0-4.4 cm:..........1yr
4.5-4.9 cm:.........6 mo
5.0-5.5 cm:.........3-6 mo

CTA and Renal Artery Stenosis – Renal artery stenosis is the major cause of secondary hypertension. It may also cause renal insufficiency and end-stage renal disease. Atherosclerosis is one of the common causes of this condition, especially in older patients with multiple cardiovascular risk factors and worsening hypertension or deterioration of renal function. CTA is used to evaluate the renal arteries and detect renal artery stenosis.

REFERENCES

CPT Codes: 74176, 74177, 74178

INTRODUCTION:

CT provides direct visualization of anatomic structures in the abdomen and pelvis and is a fast imaging tool used to detect and characterize disease involving the abdomen and pelvis. Abdomen/pelvis imaging begins at the diaphragmatic dome through pubic symphysis. It has an ability to demonstrate abnormal calcifications or fluid/gas patterns in the viscera or peritoneal space.

In general, ionizing radiation from CT should be avoided during pregnancy. Ultrasound is clearly a safer imaging option and is the first imaging test of choice, although CT after equivocal ultrasound has been validated for diagnosis. Clinician should exercise increased caution with CT imaging in children, pregnant women and young adults. Screening for pregnancy as part of a work-up is suggested to minimize the number of unexpected radiation exposures for women of childbearing age.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN/PELVIS CT:

For evaluation of hematuria:
- Hematuria

For evaluation of known or suspected kidney or ureteral stones:
- Delineation of known or suspected renal calculi or ureteral calculi.

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:
- Initial evaluation of suspicious masses/tumors found by physical exam or imaging study, such as ultrasound (US) and both the abdomen and pelvis are likely affected.
- Surveillance: One follow-up exam to ensure no suspicious change has occurred in a tumor in the abdomen and pelvis. No further surveillance CT unless tumor(s) are specified as highly suspicious or change was found on last follow-up CT, new/changing sign/symptoms or abnormal lab values.

Evaluation of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as ultrasound (US):
- Initial staging of known cancer:
 - All cancers, excluding the following:
 - Basal Cell Carcinoma of the skin,
 - Melanoma without symptoms or signs of metastasis,
 - Prostate cancer unless Gleason score seven plus (7+) or PSA over twenty (20)
- Three (3) month follow-up of known abdomen/pelvic cancer undergoing active treatment within the past year.
- Six (6) month follow-up of known abdomen/pelvic cancer undergoing active treatment within the past year.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected abdominal/pelvic metastasis based on a sign, symptom or an abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated.

For evaluation of an organ enlargement:
- For the evaluation of an organ enlargement such as splenomegaly, hepatomegaly, uterus or ovaries as evidenced by physical examination or confirmed on any previous imaging study.

For evaluation of suspected infection or inflammatory disease:
- Suspected acute appendicitis (or severe acute diverticulitis) if abdominal pain and tenderness to palpation is present, with at LEAST one of the following:
 - WBC elevated
 - Fever
 - Anorexia or
 - Nausea and vomiting.
- Suspected peritonitis (from any cause) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, rigid abdomen, or
 - Severe tenderness to palpation present over entire abdomen.
- Suspected pancreatitis.
- Suspected complications of diverticulitis (known to be limited to the abdomen/pelvis by prior imaging) with abdominal/pelvic pain or severe tenderness, not responding to antibiotics treatment.
- Suspected inflammatory bowel disease (Crohn’s or ulcerative colitis) with abdominal pain, and persistent diarrhea, or bloody diarrhea.
- Suspected cholecystitis or retained gallstones with recent equivocal ultrasound.
- Suspected infection in abdomen/pelvis.

For evaluation of known infection or inflammatory disease follow up:
- Complications of diverticulitis with severe abdominal/pelvic pain or severe tenderness or mass, not responding to antibiotic treatment, (prior imaging study is not required for diverticulitis diagnosis).
- Pancreatitis by history, (including pancreatic pseudocyst) with abdominal pain suspicious for worsening, or re-exacerbation.
- Known inflammatory bowel disease, (Crohn’s or Ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation.
- Any known infection that is clinically suspected to have created an abscess in the abdomen or pelvis.
- Any history of fistula that requires re-evaluation, or is suspected to have recurred in the abdomen or pelvis.
- Abnormal fluid collection seen on prior imaging that needs follow-up evaluation.
 - Follow up for peritonitis (from any cause) if abdominal/pelvic pain and tenderness to palpation is present, and at LEAST one of the following: rebound, rigid abdomen, or severe tenderness to palpation present over entire abdomen.
- Known infection in the abdomen/pelvis region.

For evaluation of known or suspected vascular disease (e.g., aneurysms or hematomas):
- Evidence of vascular abnormality seen on imaging studies.
- Evaluation of suspected or known aneurysm: > 2.5cm or in evaluating abdominal/pelvic extent of aortic aneurysm of suspected or known aorta aneurysm or in evaluating abdominal/pelvic extent of aortic aneurysm:
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
• Prior imaging (e.g. ultrasound) demonstrating aneurysm > 2.5 cm in diameter OR
• Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of abdominal or pelvic pain
• Scheduled follow-up evaluation of aorto/femoral endograft or stent. (Abd/Pelvis CTA is preferred)
 o Asymptomatic at six (6) month intervals, for two (2) years
 o Symptomatic/complications related to stent graft – more frequent imaging may be needed.
• Suspected retroperitoneal hematoma or hemorrhage

For evaluation of trauma:
• For evaluation of trauma with lab or physical findings of intra-abdominal/pelvic bleeding.
• Suspected retroperitoneal hematoma or hemorrhage.

Pre-operative evaluation:
• For abdominal/pelvic surgery or procedure.

Post-operative/procedural evaluation:
• Follow-up of known or suspected post-operative complication.
• A follow-up study to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
• ≤5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 o Cancer surveillance – Active monitoring for recurrence as clinically indicated.

Other indications for Abdomen/Pelvic CT Combo:
• Suspected adrenal mass or pheochromocytoma based on diagnostic testing/imaging results, and/or a suspicious clinical presentation.
• Persistent abdomen/pelvic pain not explained by previous imaging/procedure
• Unexplained weight loss of 10% of body weight in two months (patient history is acceptable); with a second MD visit documenting some further decline in weight.
• Unexplained weight loss of 5% of body weight in six months confirmed by documentation to include the following
 o Related history and abdominal exam.
 o Chest x-ray
 o Abdominal Ultrasound
 o Lab tests, must include TSH
 o Colonoscopy if patient fifty plus (50+) years old
• Unexplained abdominal pain in patients seventy-five (75) years or older.
• Suspected Spigelian hernia (ventral hernia) or incisional hernia (evidenced by a surgical abdominal scar) when ordered as a pre-operative study.
• Hernia with suspected complications.
• Ischemic bowel.

ADDITIONAL INFORMATION RELATED TO ABDOMEN/PELVIS CT:
Ultrasound should be considered prior to a request for Abdomen or Pelvis CT for the following evaluations:
- Possible gallstones or abnormal liver function tests with gall bladder present.
- Evaluation of cholecystitis.
- Repeat CT studies of renal mass.
- Repeat CT Hepatic mass follow-up.
- Repeat CT for aortic aneurysm ordered by non-surgeon.

CT for suspected renal stones: An initial CT study is done to identify the size of the stone and rule out obstruction. *(7 mm is the key size: less than that size the expectation is that it will pass)* After the initial CT study for kidney stone is done, the stone can be followed by x-ray or US (not CT). If a second exacerbation occurs/a new stone is suspected another CT would be indicated to access the size of stone and rule out obstruction.

CT Imaging for renal colic and hematuria: CT protocols include: “stone protocol” for detecting urinary tract calculi, “renal mass protocol” for characterizing known renal masses and CT urography for evaluating hematuria. Non-contrast CT can be used for detecting most ureteral and renal stones but sometimes an intravenous contrast agent is needed to determine the relationship of the calculus to the opacified ureter. CT is an effective imaging examination for diagnosing hematuria caused by urinary tract calculi, renal tumors and urothelia tumors.

CT Imaging for abdominal aortic aneurysms: If a pulsatile abdominal mass is found in an asymptomatic patient, abdominal ultrasonography is an inexpensive and noninvasive technique for initial evaluation. For further examination, CT may be performed to better define the shape and extent of the aneurysm and the local anatomic relationships of the visceral and renal vessels. CT has high level of accuracy in sizing aneurysms. CT angiography is not routinely required to assess abdominal aortic aneurysms and the decision to utilize conventional CT or CT angiography is based on factors unique to the individual case.

Risk of rupture in 6 years for an AAA < 4 cm is 1%. For a 4-5 cm AAA the risk of rupture increases to 1-3% per year and becomes 6-11% per year for AAA 5-7 cm in cross sectional diameter. >7 cm the risk of rupture goes to 7% per year.

Abdominal aneurysms and general guidelines for follow-up:
The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal is 2.0 cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter >/= 3.0 cm or dilatation of the aorta >/= 1.5 the normal diameter. - Initial evaluation of AAA is accurately made by ultrasound. Ultrasound can detect and size AAA, with the advantage of being relatively inexpensive, noninvasive and not require iodinate contrast. The limitations are that overlying bowel gas can obscure findings and the technique is operator dependent.

Recommended intervals for initial follow-up imaging (any modality) of ectatic aortas and abdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm):
- 2.5-2.9 cm: 5yr
- 3.0-3.4 cm: 3yr
- 3.5-3.9 cm: 2yr
- 4.0-4.4 cm: 1yr
- 4.5-4.9 cm: 6 mo
- 5.0-5.5 cm: 3-6 mo

Combination request of Abdomen CT/Chest CT: A Chest CT will produce images to the level of L3. Documentation for combo is required.
REDUCING RADIATION EXPOSURE:

Evaluation for appendicitis following clinical and laboratory evaluation
Sonography of the right upper quadrant and pelvis followed by graded compression and color Doppler sonography of the right lower quadrant was used by Gaitini and colleagues as the initial imaging study in 420 consecutive patients referred for emergency evaluation of acute appendicitis. This method correctly diagnosed acute appendicitis in 66 of 75 patients (88%) and excluded it correctly in 312 of 326 patients (96%). It was inconclusive in 19 patients (<5%). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 74.2%, 97%, 88%, 93%, and 92%, respectively and comparable to CT. Appropriate and timely diagnosis of acute appendicitis is needed. Negative laparotomy rates can range from 16% to 47% when based on clinical and laboratory data alone, while perforation rate can reach 35% when surgery is delayed. Appropriate initial imaging can lower the negative laparotomy rate to 6-10%. Ultrasound has a higher non-diagnostic rate (4%) vs. 0.8% for MDCT. In a prospective study operator experience and patient BMI did not affect diagnostic accuracy.

Consider alternatives to CT imaging in patients with Crohn disease
In facilities where the technical and clinical expertise exists, MR enterography is emerging as the study of choice (replacing CT) for patients requiring frequent follow up examinations to determine disease extent or progression. The technique also has advantage over small bowel follow through (SBFT) in that it avoids ionizing radiation completely yet allows evaluation of extramucosal and extraluminal disease.

Consider the role of capsule endoscopy
Retrospective comparison of capsule endoscopy (CE) to CT in patients with no evidence of a small-bowel stricture at barium examination was the focus of the article by Hara, et al. Studies were done for bleeding of unknown origin after colonoscopy and/or Gastroenterologist, inflammatory bowel disease or chronic abdominal pain. CE was found to be more sensitive than CT examination in the 19 patients that underwent both. CE provides a complimentary and sensitive approach to the evaluation of the small bowel without radiation exposure. A negative examination does not completely rule out pathology.

Initial evaluation of abdominal aortic aneurysm (AAA)
Initial evaluation of AAA is accurately made by ultrasound.

REFERENCES

CPT Codes: 74181, 74182, 74183

INTRODUCTION:
Abdominal magnetic resonance imaging (MRI) is a proven and useful tool for the diagnosis, evaluation, assessment of severity and follow-up of diseases of the abdomen. It is more expensive than computed tomography (CT) but it avoids exposing the patient to ionizing radiation. MRI may be the best imaging procedure for patients with allergy to radiographic contrast material or renal failure. It may also be the procedure of choice for suspected lesions that require a technique to detect subtle soft-tissue contrast and provide a three dimensional depiction of a lesion. Abdominal MRI studies are usually targeted for further evaluation of indeterminate or questionable findings, identified on more standard imaging exams such as Ultrasound (US) and CT.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN MRI:

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:
- Initial evaluation of suspicious abdomen masses/tumors found only in the abdomen by physical exam or imaging study, such as Ultrasound (US).
- Surveillance: One follow-up exam to ensure no suspicious change has occurred in a tumor in the abdomen. No further surveillance unless tumor(s) are specified as highly suspicious, or change was found on last follow-up.

of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as Ultrasound (US) and CT:
- Initial staging of known cancer
 - Basal Cell Carcinoma of the skin,
 - Melanoma without symptoms or signs of metastasis.
- Three (3) month follow-up of known abdominal cancer undergoing active treatment within the past year.
- Six (6) month follow-up of known abdominal cancer undergoing active treatment within the past year.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected abdominal metastasis based on a sign, symptom or an abnormal lab value.
- Cancer surveillance: Active monitoring for recurrence as clinically indicated

For evaluation of suspected infection or inflammatory disease:
- Suspected acute appendicitis (or severe acute diverticulitis) if abdominal pain and tenderness to palpation is present, with at LEAST one of the following:
 - WBC elevated
 - Fever
 - Anorexia or
Nausea and vomiting.
- Suspected peritonitis (from any cause) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, rigid abdomen, or
 - Severe tenderness to palpation present over entire abdomen.
- Suspected pancreatitis.
- Suspected inflammatory bowel disease (Crohn's or ulcerative colitis) with abdominal pain, and persistent diarrhea, or bloody diarrhea.
- Suspected cholecystitis or retained gallstones with recent equivocal ultrasound.
- Suspected infection in the abdomen.

For evaluation of known infection or inflammatory disease follow up:
- Complications of diverticulitis with severe abdominal pain or severe tenderness or mass, not responding to antibiotic treatment. (prior imaging study is not required for diverticulitis diagnosis).
- Pancreatitis by history, (including pancreatic pseudocyst) with abdominal pain suspicious for worsening, or re-exacerbation.
- Known inflammatory bowel disease, (Crohn’s or ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation.
- Any known infection that is clinically suspected to have created an abscess in the abdomen.
- Any history of fistula limited to the abdomen that requires re-evaluation, or is suspected to have recurred.
- Abnormal fluid collection seen on prior imaging that needs follow-up evaluation.
- Hepatitis C/hepatoma evaluation with elevated alpha-fetoprotein (AFP) and equivocal ultrasound results.
- Known infection in the abdomen.

Pre-operative evaluation:
- For abdominal surgery or procedure.

Post-operative/procedural evaluation:
- Follow-up of suspected or known post-operative complication involving only the abdomen.
- A follow-up study to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:
- ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance – Active monitoring for recurrence as clinically indicated.

Other Indications for an Abdominal MRI:
- To provide an alternative to abdominal CT when CT would be limited due to allergy to radiographic contrast material.
- To provide an alternative to follow-up of an indeterminate abdomen CT when previous CT/Ultrasound was equivocal.
- Suspected adrenal mass or pheochromocytoma based on diagnostic testing/imaging results, and/or a suspicious clinical presentation.

ADDITIONAL INFORMATION RELATED TO ABDOMINAL MRI:
MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRI of the liver – The liver is a common site of metastatic spread. Patients with a history of known or suspected malignancy, especially tumors from the colon, lung, pancreas and stomach, are at risk for developing hepatocellular carcinoma. Patients with chronic liver disease are also at risk for developing liver cancer and undergo periodic liver screening for focal liver lesion detection, usually with ultrasonography (US). Extra-cellular gadolinium chelate contrast-enhanced MRI is used for evaluating patients with an abnormal US. Patients with hepatic metastases being considered for metastasectomy undergo contrast-enhanced MRI using tissue-specific contrast agents.

MRI of the adrenal glands – The adrenal glands are susceptible for metastases from various tumors, especially of lung or breast. Adrenal lesions may also represent primary tumors of the adrenal cortex of medulla, both benign and malignant. MRI may be done to distinguish between benign and malignant lesions. Metastases are predominantly hypointense on T1-weighted images and hyperintense on T2-weighted images. Benign lesions, which have high lipid content, exhibit clear suppression of the signals.

MRI of the pancreas – The most common pancreatic endocrine tumors, accounting for up to 50% of all cases, are insulinomas, which are usually benign. The next most common is gastrinomas. Patients with gastrinomas generally present with recurrent, multiple or ‘ectopic’ peptic ulceration, the Zollinger–Ellison syndrome. After a diagnosis of gastrinomas has been confirmed, imaging should be done to localize and stage the disease. Other pancreatic endocrine tumors are rare and often associated with genetic disorders such as the multiple endocrine neoplasia type 1 (MEN 1). MRI is the preferred imaging for follow-up in patients with MEN 1 where repeated imaging may be required to assess the response to therapy.

MRI of the kidney – MRI in renal imaging has been used to differentiate benign lesions versus malignant lesions in patients unable to undergo CT scanning with contrast media or in cases where the CT findings were questionable. Initial evaluation of renal lesions is often undertaken with ultrasound. MRI can have additional diagnostic value in the evaluation of lesions with minimal amounts of fat or with intracellular fat. MRI may have a higher accuracy than CT in the evaluation of early lymph node spread. Although MRI of the kidney has not yet found broad clinical application, it may have an increasing role in the management of patients with renal disease.

MRI of the spleen – Among some radiologists, the spleen is considered a ‘forgotten organ’ although it is included and demonstrated on every abdominal CT and MRI. Malignant tumors of the spleen are rare: malignant lymphomas are the most common and are usually a manifestation of generalized lymphoma. Splenic metastases are predominantly hypointense on T1-weighted images and hyperintense on T2-weighted images and MRI is used for the detection of necrotic or hemorrhagic metastases.

MRI to diagnose abdominal aortic aneurysm – MRI can be useful in the diagnosis of aortic aneurysms in patients with chronic aortic disease. The advantages include: safety, noninvasive nature (except for intravenous contrast), wide field of view, multi-planar imaging and 3D relationship viewing. MRI, unlike CT, does not require large volumes of iodinated contrast. ECG-gated spin-echo MRI is the basis for many MRI imaging algorithms for diagnosing abdominal aortic disease. A rapid breath holds MRI, a more recent development, allows more comprehensive examination of the aorta and defines many types of aortic pathology.
MRI for the evaluation of vascular abnormalities such as renal artery stenosis and celiac/superior mesenteric artery stenosis (in chronic mesenteric ischemia) - Doppler Ultrasound, MRA or CTA should be considered as the preferred imaging modalities.

REFERENCES

CPT Codes: 74185

INTRODUCTION:

Magnetic resonance angiography (MRA) generates images of the arteries that can be evaluated for evidence of stenosis, occlusion or aneurysms. It is used to evaluate the arteries of the abdominal aorta and the renal arteries. Contrast enhanced MRA requires the injection of a contrast agent which results in very high quality images. MRA does not use ionizing radiation, allowing MRA to be used for follow-up evaluations. MRA is not used as a screening tool, e.g. evaluation of asymptomatic patients without a previous diagnosis.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN MRA:

For evaluation of known or suspected abdominal vascular disease:
- For known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- Evaluation of suspected or known aortic aneurysm**:
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating aneurysm >2.5cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by signs/symptoms such as new onset of abdominal or pelvic pain.
- Suspected retroperitoneal hematoma or hemorrhage.
- Suspected renal vein thrombosis in patient with known renal mass.
- For evaluation of mesenteric ischemia/ischemic colitis.
- Venous thrombosis if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- For evaluation of hepatic blood vessel abnormalities (aneurysm, hepatic vein thrombosis, stenosis post transplant).
- For evaluation of splenic artery aneurysm.
- Kidney failure or renal insufficiency if initial evaluation performed with Ultrasound is inconclusive.
- For evaluation of known or suspected renal artery stenosis or resistant hypertension demonstrated by any of the following:
 - Unsuccessful control after treatment with three (3) or more anti-hypertensive medication at optimal dosing.
 - Acute elevation of creatinine after initiation of an angiotension converting enzyme inhibitor, (ACE inhibitor) or Angiotension receptor blocker, (ARB).
 - Asymmetric kidney size noted on ultrasound.
 - Onset of hypertension in a person younger than age 30 without any other risk factors or family history of hypertension.
New onset of hypertension after age 55 (>160/100).
- Acute rise in blood pressure in a person with previously stable blood pressures.
- Flash pulmonary edema without identifiable causes.
- Malignant hypertension.

Pre-operative evaluation:
- Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- For pretransplant evaluation of either liver or kidney.

Post-operative or post-procedural evaluation:
- Evaluation of endovascular/interventional abdominal vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in the peritoneal cavity.
- Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA).
 - Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
 - Asymptomatic at six (6) month intervals, for two (2) years.
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
- Follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO ABDOMEN MRA:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRI Follow-up for post-endovascular repair (EVAR) - CT is generally the study of choice in this evaluation due to improved spatial resolution and less artifact from components of the stent graft.

Abd/Pelvis MRA & Lower Extremity MRA Runoff Requests: Two (2) auth requests are required, one Abd MRA, CPT code 74185 and one for Lower Extremity MRA, CPT code 73725. This will provide imaging of the abdomen, pelvis and both legs.

MRA and Abdominal Aortic Aneurysm – Endovascular repair is an alternative to open surgical repair of an abdominal aortic aneurysm. It has lower morbidity and mortality rates and is minimally invasive. In order to be successful, it depends on precise measurement of the aneurysm and involved vessels. MRA with gadolinium allows visualization of the aorta and major branches and is effective and reliable for use in planning the placement of the endovascular aortic stent graft. MRA is also used for the detection of postoperative complications of endovascular repair.

Abdominal Aneurysms and general Guidelines for follow-up:

The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal is 2.0 cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter >/= 3.0 cm or dilatation of the aorta >/= 1.5 the normal diameter. Initial evaluation of AAA is accurately made by ultrasound. Ultrasound can detect and size AAA, with the advantage of being relatively inexpensive, noninvasive and not require
iodinate contrast. The limitations are that overlying bowel gas can obscure findings and the technique is operator dependent.

Recommended intervals for initial follow-up imaging of ectatic aortas and Abdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm):

<table>
<thead>
<tr>
<th>Aneurysm Size</th>
<th>Follow-up Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5-2.9 cm</td>
<td>5yr</td>
</tr>
<tr>
<td>3.0-3.4 cm</td>
<td>3yr</td>
</tr>
<tr>
<td>3.5-3.9 cm</td>
<td>2yr</td>
</tr>
<tr>
<td>4.0-4.4 cm</td>
<td>1yr</td>
</tr>
<tr>
<td>4.5-4.9 cm</td>
<td>6 mo</td>
</tr>
<tr>
<td>5.0-5.5 cm</td>
<td>3-6 mo</td>
</tr>
</tbody>
</table>

MRA and Renal Artery Stenosis – Renal artery stenosis is the major cause of secondary hypertension. It may also cause renal insufficiency and end-stage renal disease. Atherosclerosis is one of the common causes of this condition, especially in older patients with multiple cardiovascular risk factors and worsening hypertension or deterioration of renal function. Navigator-gated MR angiography is used to evaluate the renal arteries and detect renal artery stenosis.

MRA and Renal Vein Thrombosis – Renal vein thrombosis is a common complication of nephritic syndrome and often occurs with membranous glomerulonephritis. Gadolinium-enhanced MRA can demonstrate both the venous anatomy and the arterial anatomy and find filling defects within renal veins. The test can be used for follow-up purposes as it does not use ionizing radiation.

REFERENCES

INTRODUCTION:
Computed tomography (CT) colonography, also known as “virtual colonoscopy,” is an imaging technique of the colon. CT colonography has been investigated as an alternative to conventional endoscopic (“optical”) colonoscopy. It has been most widely studied as an alternative screening technique for colon cancer, but has also been used in the diagnosis of colorectal cancer in people with related symptoms and for other colorectal conditions.

INDICATIONS FOR A VIRTUAL CT COLONOSCOPY:
Computed tomography (CT) colonography may be considered medically necessary for any of the following conditions:
- In patients for whom a conventional colonoscopy is indicated, but who are unable to undergo conventional colonoscopy for medical reasons.
- In patients with an incomplete conventional colonoscopy because of colonic stenosis or obstruction
- In patients for the purposes of colon cancer screening, because the clinical outcomes with this screening strategy are likely to be equivalent to optical colonoscopy.

CT colonography is considered investigational for all other indications that do not meet the conditions outlined in the policy statements above.

Medical contraindications to conventional (optical) colonoscopy may include:
- Continuous anticoagulation therapy
- High anesthesia risk (e.g., severe systemic disease)

Colon Cancer Screening
The outcomes of Computed tomography (CT) colonography described in the literature represent outcomes under ideal conditions. This generally involves a comprehensive colon cancer screening program that includes rapid access to optical colonoscopy when necessary and systematic follow-up and surveillance of patients who generally have a more complicated follow-up schedule than do patients undergoing optical colonoscopy. Therefore, to achieve the outcomes described in the literature that are equivalent to optical colonoscopy, CT colonography needs to be offered as part of a comprehensive colon cancer screening program that optimizes follow-up of patients undergoing this procedure.

General Information
- Computed tomography (CT) colonography should be performed with a minimum 16-row detector CT scanner.
- Having adequate training was an important component in clinical trials of CT colonography.
Documentation required for a Clinical Review:

- History and physical and/or consultation notes including:
 - Anesthesiologist pre-operative assessment
 - Reason a conventional colonoscopy is not indicated post service
- Operative report
CPT Codes: 75557, 75559, 75561, 75563 +75565

INTRODUCTION:

Cardiac magnetic resonance imaging (MRI) is an imaging modality utilized in the assessment and monitoring of cardiovascular disease. It has a role in the diagnosis and evaluation of both acquired and congenital cardiac disease. MRI is a noninvasive technique using no ionizing radiation resulting in high quality images of the body in any plane, unlimited anatomic visualization and potential for tissue characterization.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2010 APPROPRIATE USE CRITERIA for Heart MRI:

<table>
<thead>
<tr>
<th>Heart MRI (Appropriate ACCF et al. Criteria # with Use Score)</th>
<th>INDICATIONS (*Refer to Additional Information section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection of CAD: Symptomatic</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Chest Pain Syndrome, Including Low Risk Unstable Angina (Use of Vasodilator Perfusion CMR or Dobutamine Stress Function CMR)</td>
<td></td>
</tr>
<tr>
<td>2 U(4)</td>
<td>Inter- middle pre- test probability of CAD*</td>
</tr>
<tr>
<td></td>
<td>ECG interpretable AND able to exercise</td>
</tr>
<tr>
<td>3 A(7)</td>
<td>Inter- middle pre- test probability of CAD*</td>
</tr>
<tr>
<td></td>
<td>ECG uninterpretable OR unable to exercise</td>
</tr>
<tr>
<td>4 A(7-9)</td>
<td>High pre- test probability of CAD*</td>
</tr>
<tr>
<td>Followup of Known Ischemic CAD</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic or Stable Symptoms</td>
<td></td>
</tr>
<tr>
<td>A(7-9)</td>
<td>ROUTINE FOLLOW- UP when last invasive or non-invasive assessment of coronary artery disease showed HEMODYNAMICALLY SIGNIFICANT CAD (ischemia on stress test or FFR <= 0.80 for a major vessel or stenosis >=70% of a major vessel) over two years ago, without supervening coronary revascularization, is an appropriate indication for stress CMR in patients with high risk clinical scenarios, such as left ventricular dysfunction (ejection fraction less than 50%) or severe un-revascularized multivessel CAD (if it will alter management), OR in patients with HIGH RISK OCCUPATIONS (e.g. associated with...</td>
</tr>
</tbody>
</table>
| Heart MRI
(Appropriate ACCF et al. Criteria # with Use Score)
A= Appropriate (7-9)
U=Uncertain (4-6) | **INDICATIONS**
(*Refer to Additional Information section) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>public safety, airline and boat pilots, bus and train drivers, bridge and tunnel workers/toll collectors, police officers, and firefighters) or a HIGH PERSONAL RISK (e.g. scuba divers, etc.).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New, recurrent, or worsening (progressive) symptoms in patients with known ischemic CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(7-9)</td>
</tr>
<tr>
<td>• PRIOR LOW RISK CORONARY EVALUATION AT LEAST TWO YEARS EARLIER (e.g. limited extent of CORONARY ARTERY DISEASE, <5% myocardium at risk), AND NOW WITH NEW STABLE (or low risk unstable), RECURRENT, OR SLOWLY WORSENING (PROGRESSIVE) SYMPTOMS of coronary ischemia, is an appropriate indication for stress CMR in this patient group. However, regardless of timing of prior non-invasive assessment, clinical documentation of continued problematic symptoms or moderate to highly likely acute coronary syndrome (Table 6) of even low mortality risk (Table 7) is often better assessed with invasive coronary arteriography, particularly when stress testing in the last 2 years and current clinical findings are at odds. This category is very documentation-sensitive and requires judgment.</td>
</tr>
<tr>
<td>Note: INVASIVE CORONARY ARTERIOGRAPHY IS GENERALLY PREFERABLE in those patients, who have a PRIOR MODERATE OR HIGH RISK STRESS TEST RESULT (especially if NOT previously evaluated by invasive coronary arteriography) or a current diagnosis of moderate to high risk UNSTABLE ANGINA, and inappropriate for repeat stress CMR unless supervening reasons to prefer a non-invasive approach are documented in the record (e.g. very unclear symptoms, CKD, dye allergy, etc.), and it could alter management.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New or Worsening Symptoms without Known CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(7—9)</td>
</tr>
<tr>
<td>• One of the following, when invasive coronary arteriography is not clearly indicated or appropriate (e.g.data are equivocal, symptoms not clear, CKD, dye allergy, other etiologies suspect, etc.):</td>
</tr>
<tr>
<td>o Normal exercise EKG</td>
</tr>
<tr>
<td>o CCTA, invasive coronary arteriography, or stress imaging did not show obstructive CAD</td>
</tr>
<tr>
<td>U(4-6)</td>
</tr>
<tr>
<td>• Abnormal prior stress imaging study, when invasive coronary arteriography is not clearly indicated or appropriate (e.g.data are equivocal, symptoms not clear, CKD, dye allergy, other etiologies suspect, etc.):</td>
</tr>
<tr>
<td>o Post Coronary Revascularization</td>
</tr>
</tbody>
</table>
INDICATIONS

(*Refer to Additional Information section)

<table>
<thead>
<tr>
<th>Heart MRI (Appropriate ACCF et al. Criteria # with Use Score)</th>
<th>INDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A= Appropriate (7-9) U=Uncertain (4-6)</td>
<td></td>
</tr>
<tr>
<td>A(7-9)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic or ischemic equivalent that is well documented</td>
<td></td>
</tr>
<tr>
<td>A(7-9)</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td></td>
</tr>
<tr>
<td>Minimum of 2 YEARS post coronary artery bypass grafting or 2</td>
<td></td>
</tr>
<tr>
<td>YEARS post percutaneous coronary intervention (whichever was</td>
<td></td>
</tr>
<tr>
<td>the latter) is appropriate only for patients with high direct</td>
<td></td>
</tr>
<tr>
<td>CORONARY-related risk, such as incomplete coronary</td>
<td></td>
</tr>
<tr>
<td>revascularization with feasible additional revascularization</td>
<td></td>
</tr>
<tr>
<td>of residual severe multivesseled disease, need for otherwise</td>
<td></td>
</tr>
<tr>
<td>unevaluated follow up of stenting of unprotected left main</td>
<td></td>
</tr>
<tr>
<td>coronary artery (LM) disease or left ventricular dysfunction</td>
<td></td>
</tr>
<tr>
<td>(ejection fraction less than 50%), OR for patients with HIGH</td>
<td></td>
</tr>
<tr>
<td>OCCUPATIONAL RISK (e.g. associated with public safety,</td>
<td></td>
</tr>
<tr>
<td>airline and boat pilots, bus and train drivers, bridge and</td>
<td></td>
</tr>
<tr>
<td>tunnel workers/toll collectors, police officers, and</td>
<td></td>
</tr>
<tr>
<td>firefighters) or HIGH PERSONAL RISK (e.g. scuba divers, etc.)</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Asymptomatic Patient</td>
<td></td>
</tr>
<tr>
<td>U(4-6)</td>
<td></td>
</tr>
<tr>
<td>High Global Risk CAD</td>
<td></td>
</tr>
<tr>
<td>Regardless of EKG interpretability or ability to exercise >2</td>
<td></td>
</tr>
<tr>
<td>years from last assessment</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Intra-Cardiac Structures (Use of MR</td>
<td></td>
</tr>
<tr>
<td>Coronary Angiography)</td>
<td></td>
</tr>
<tr>
<td>8 A</td>
<td></td>
</tr>
<tr>
<td>Evaluation of suspected coronary anomalies or coronary</td>
<td></td>
</tr>
<tr>
<td>aneurysms</td>
<td></td>
</tr>
<tr>
<td>9 U</td>
<td></td>
</tr>
<tr>
<td>Acute Chest Pain (Use of Vasodilator Perfusion CMR or</td>
<td></td>
</tr>
<tr>
<td>Dobutamine Stress Function CMR)</td>
<td></td>
</tr>
<tr>
<td>12 U</td>
<td></td>
</tr>
<tr>
<td>Intermediate Global risk</td>
<td></td>
</tr>
<tr>
<td>Equivocal stress imaging test (exercise, stress SPECT, or</td>
<td></td>
</tr>
<tr>
<td>stress echo)</td>
<td></td>
</tr>
<tr>
<td>13 A</td>
<td></td>
</tr>
<tr>
<td>Coronary angiography (catheterization or CCTA)</td>
<td></td>
</tr>
<tr>
<td>Stenosis of unclear significance</td>
<td></td>
</tr>
<tr>
<td>A(7-9)</td>
<td></td>
</tr>
<tr>
<td>Prior Exercise EKG stress test or CCTA</td>
<td></td>
</tr>
<tr>
<td>Equivocal result</td>
<td></td>
</tr>
<tr>
<td>A(7-9)</td>
<td></td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
</tbody>
</table>
Heart MRI
(Appropriate ACCF et al. Criteria # with Use Score)
A= Appropriate (7-9)
U=Uncertain (4-6)

| INDICATIONS
(*Refer to Additional Information section)
• One of the following:
 o High concern for ischemic EKG, but only low global risk
 CORONARY ARTERY DISEASE, and indication for invasive
 coronary arteriography is not clear
 o Abnormal prior stress imaging study, and indication for
 invasive coronary arteriography is not clear
 o LEFT BUNDLE BRANCH BLOCK, when the history (low
 global risk), physical examination, and/or noninvasive
 ejection fraction together support further evaluation,
 and invasive coronary arteriography is not already
 indicated, is an indication for stress CMR |
| • If all the following apply:
 o Coronary evaluation before thoracoabdominal aortic surgery
 o Patient has less than a 4 MET functional capacity
 o Patient has one perioperative risk factor
 o No coronary evaluation (invasive or non-invasive) within the
 past year
 o If invasive coronary arteriography is preferable, then stress
 CMR is not appropriate
 o Alternatively, without the need for the above criteria, patient
 would be a candidate for stress CMR at the time of a
 preoperative evaluation if indications unrelated to the surgery
 were well documented in the clinical record |
<table>
<thead>
<tr>
<th>Heart MRI (Appropriate ACCF et al. Criteria # with Use Score) A= Appropriate (7-9) U=Uncertain (4-6)</th>
<th>INDICATIONS (*Refer to Additional Information section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Cardiovascular Conditions</td>
<td>Other Cardiovascular Conditions</td>
</tr>
<tr>
<td>A(7-9)</td>
<td>One of the following:</td>
</tr>
<tr>
<td>o Newly diagnosed systolic heart failure</td>
<td></td>
</tr>
<tr>
<td>o Newly diagnosed diastolic heart failure</td>
<td></td>
</tr>
<tr>
<td>o Sustained VT</td>
<td></td>
</tr>
<tr>
<td>o VF</td>
<td></td>
</tr>
<tr>
<td>o Exercise Induced VT or nonsustained VT</td>
<td></td>
</tr>
<tr>
<td>o Prior to initiation of antiarrhythmic therapy in high CAD global risk patients</td>
<td></td>
</tr>
<tr>
<td>U(4-6)</td>
<td>One of the following:</td>
</tr>
<tr>
<td>o Frequent PVCs (>30/min)</td>
<td></td>
</tr>
<tr>
<td>o Intermediate or high Global Risk CAD</td>
<td></td>
</tr>
<tr>
<td>Structure and Function</td>
<td>Evaluation of Ventricular and Valvular Function</td>
</tr>
<tr>
<td>Procedures may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and delayed contrast enhancement, when echocardiogram is inadequate</td>
<td>Procedures may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and delayed contrast enhancement, when echocardiogram is inadequate</td>
</tr>
<tr>
<td>18 A(9)</td>
<td>• Assessment of complex congenital heart disease including anomalies of coronary circulation, great vessels, and cardiac chambers and valves</td>
</tr>
<tr>
<td></td>
<td>• Procedures may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and contrast enhancement</td>
</tr>
<tr>
<td>19 U(6)</td>
<td>• Evaluation of LV function following myocardial infarction OR in heart failure patients</td>
</tr>
<tr>
<td>20 A(8)</td>
<td>• Evaluation of LV function following myocardial infarction OR in heart failure patients</td>
</tr>
<tr>
<td></td>
<td>• Patients with technically limited images from echocardiogram</td>
</tr>
<tr>
<td>21 A(8)</td>
<td>• Quantification of LV function</td>
</tr>
<tr>
<td></td>
<td>• Discordant information that is clinically significant from prior tests</td>
</tr>
<tr>
<td>22 A(8)</td>
<td>• Evaluation of specific cardiomyopathies (infiltrative [amyloidosis, sarcoidosis, hemochromatosis,], noncompaction, HCM, acute viral myocarditis or due to cardiotoxic therapies), if echocardiography is inadequate and the information might alter management</td>
</tr>
<tr>
<td></td>
<td>• Use of delayed enhancement</td>
</tr>
</tbody>
</table>
| 23 A(8) | • Characterization of native and prosthetic cardiac valves—including morphology of a bicuspid aortic valve’s ascending aorta, hemodynamics, planimetry of stenotic disease, quantification of regurgitant disease, preoperative/preinterventional evaluation of septal defects, and valve/inflow/outflow/conduit dimensions,
INDICATIONS
(*Refer to Additional Information section)

Evaluation of Intra- and Extra-Cardiac Structures

24 (A9)
- Evaluation for arrhythmogenic right ventricular cardiomyopathy (ARVC)
- Patients presenting with syncope or ventricular arrhythmia

25 (A8)
- Evaluation of myocarditis or myocardial infarction with normal coronary arteries
- Positive cardiac enzymes without obstructive atherosclerosis on angiography

Detection of Myocardial Scar and Viability

30 (A7)
- To determine the location, and extent of myocardial necrosis including ‘no reflow’ regions
- Post acute myocardial infarction

31 (U4)
- To detect post PCI myocardial necrosis

32 (A9)
- To determine viability prior to revascularization
- Establish likelihood of recovery of function with revascularization (PCI or CABG) or medical therapy

33 (A9)
- To determine viability prior to revascularization
- Viability assessment by SPECT or dobutamine echo has provided "equivocal or indeterminate" results

INDICATIONS FOR HEART MRI:

- Where Stress Echocardiography (SE) is noted as an appropriate substitute for a Cardiac MRI indication (#'s 2, 3, 4, 12, and 13) then at least one of the following contraindications to SE must be demonstrated:
 - Stress echocardiography is not indicated: OR
Stress echocardiography has been performed however findings were inadequate, there were technical difficulties with interpretation, or results were discordant with previous clinical data; OR

Heart MRI is preferential to stress echocardiography including but not limited to following conditions:

- Ventricular paced rhythm
- Evidence of ventricular tachycardia
- Severe aortic valve dysfunction
- Severe Chronic Obstructive Pulmonary Disease, (COPD) as defined as FEV1 < 30% predicted or FEV1 < 50% predicted plus respiratory failure or clinical signs of right heart failure. (GOLD classification of COPD access http://www.pulmonaryreviews.com/jul01/pr_jul01_copd.html)
- Congestive Heart Failure (CHF) with current Ejection Fraction (EF), 40%
- Inability to get an echo window for imaging
- Prior thoracotomy, (CABG, other surgery)
- Obesity BMI>40
- Poorly controlled hypertension [generally above 180 mm Hg systolic (both physical stress and dobutamine stress may exacerbate hypertension during stress echo)]
- Poorly controlled atrial fibrillation (Resting heart rate > 100 bpm on medication)
- Inability to exercise requiring pharmacological stress test
- Segmental wall motion abnormalities at rest (e.g. due to cardiomyopathy, recent MI, or pulmonary hypertension)

OR

- Arrhythmias with Stress Echocardiography • any patient on a type 1C anti-arrhythmic drug (i.e. Flecainide or Propafenone) or considered for treatment with a type 1C anti-arrhythmic drug.

For all other requests, the patient must meet ACCF/ASNC Appropriateness criteria for indications (score 4-9) above.

INDICATIONS IN ACC GUIDELINES WITH “INAPPROPRIATE” DESIGNATION:

Patient meets ACCF/ASNC Appropriateness criteria for indications (score 1-3) noted below OR meets any one of the following:

- For any combination imaging study
- For same imaging tests less than six weeks part unless specific guideline criteria states otherwise.
- For different imaging tests, such as CTA and MRA, of same anatomical structure less than six weeks apart without high level review to evaluate for medical necessity.
- For re-imaging of repeat or poor quality study

ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2006 APPROPRIATE USE CRITERIA for Heart MRI:

<table>
<thead>
<tr>
<th>Heart MRI (Appropriate ACCF et al. Criteria # with Use Score)</th>
<th>INDICATIONS</th>
<th>PROPRIETE USE SCORE (1-3):</th>
<th>I= Inappropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection of CAD: Symptomatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Chest Pain Syndrome (Use of Vasodilator Perfusion CMR or Dobutamine Stress Function CMR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart MRI (Appropriate ACCF et al. Criteria # with Use Score)</td>
<td>INDICATIONS (*Refer to Additional Information section)</td>
<td>PROPRIETE USE SCORE (1-3): I= Inappropriate</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>• Low pre-test probability of CAD</td>
<td>I(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ECG interpretable AND able to exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>• Intermediate pre-test probability of CAD</td>
<td>I(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ECG interpretable AND able to exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>• Intermediate pre-test probability of CAD</td>
<td>I(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ECG uninterpretable OR unable to exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>• High pre-test probability of CAD</td>
<td>I(1)</td>
<td></td>
</tr>
<tr>
<td>Acute Chest Pain (Use of Vasodilator Perfusion CMR or Dobutamine Stress Function CMR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>• With history of high pre-test probability of CAD</td>
<td>I(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ECG · ST segment elevation and/or positive cardiac enzymes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment With Prior Test Results (Use of Vasodilator Perfusion CMR or Dobutamine Stress Function CMR)</td>
<td></td>
<td>I(2)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>• Normal prior stress test (exercise, nuclear, echo, MRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High CHD risk (Framingham)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Within 1 year of prior stress test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment: Preoperative Evaluation for Non-Cardiac Surgery – Low Risk Surgery (Use of Vasodilator Perfusion CMR or Dobutamine Stress Function CMR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>• Intermediate perioperative risk predictor</td>
<td>I(2)</td>
<td></td>
</tr>
<tr>
<td>Detection of CAD: Post-Revascularization (PCI or CABG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Chest Pain Syndrome (Use of MR Coronary Angiography)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>• Evaluation of bypass grafts</td>
<td>I(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• History of percutaneous revascularization with stents</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION RELATED TO HEART MRI:

Abbreviations

<table>
<thead>
<tr>
<th>ACS</th>
<th>acute coronary syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABG</td>
<td>coronary artery bypass grafting surgery</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CCTA</td>
<td>coronary CT angiography</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CTA</td>
<td>computed tomographic angiography</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ERNA</td>
<td>equilibrium radionuclide angiography</td>
</tr>
</tbody>
</table>
FP = First Pass
HF = heart failure
LBBB = left bundle-branch block
LV = left ventricular
MET = estimated metabolic equivalent of exercise
MI = myocardial infarction
MPI = myocardial perfusion imaging
MRI = magnetic resonance imaging
PCI = percutaneous coronary intervention
PET = positron emission tomography
RNA = radionuclide angiography
SE = stress echocardiography
SPECT = single positron emission CT (see MPI)

What is a valid anginal or ischemic equivalent?

Development of an anginal equivalent (e.g. shortness of breath, fatigue, or weakness) either with or without prior coronary revascularization should be based upon the documentation of reasons to suspect that symptoms other than chest discomfort are not due to other organ systems (e.g. dyspnea due to lung disease, fatigue due to anemia, etc.), by presentation of clinical data such as respiratory rate, oximetry, lung exam, etc. (as well as d-dimer, chest CT(A), and/or PFTs, when appropriate), and then incorporated into the evaluation of coronary artery disease as would chest discomfort. Syncope by itself is generally not considered an anginal equivalent, and is handled under a separate category in this guideline.

Exercise Treadmill Testing

Exercise Treadmill Testing (ETT) is the appropriate first line test in most patients with suspected CAD. In appropriately selected patients the test provides adequate sensitivity and specificity with regard to diagnosis and prognostication. There are patients in whom the test is not the best choice, for example those with resting ECG abnormalities, inability to exercise and perhaps diabetes. Also of note from an operational standpoint the test does not require pre-authorization.

An uninterpretable baseline EKG includes:

- Abnormalities of ST segment depression of 0.1 mV (1 mm with conventional calibration) or more
- Ischemic looking T wave inversions of at least 0.25 mV (2.5 mm with conventional calibration)
- EKG findings of probable or definite LVH, WPW, a ventricular paced rhythm, or left bundle branch block
- Digitalis use or hypokalemia
- Resting HR under 50 bpm on a beta blocker and an anticipated suboptimal workload (e.g. rate-pressure product less than 20-25K)
- Prior false positive stress EKG

Pretest Probability of CAD for Symptomatic (Ischemic Equivalent) Patients

Typical Angina (Definite): Defined as 1) substernal chest pain or discomfort that is 2) provoked by exertion or emotional stress and 3) relieved by rest and/or nitroglycerin.

Atypical Angina (Probable): Chest pain or discomfort that **lacks** 1 of the characteristics of definite or typical angina.

Nonanginal Chest Pain: Chest pain or discomfort that **meets 1 or none** of the typical angina characteristics.
Once the presence of symptoms (Typical Angina/Atypical Angina/Non angina chest pain/Asymptomatic) is determined, the probabilities of CAD can be calculated from the risk algorithms as follows:

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Gender</th>
<th>Typical / Definite Angina Pectoris</th>
<th>Atypical / Probable Angina Pectoris</th>
<th>Nonanginal Chest Pain</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td><39</td>
<td>Men</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>40–49</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>50–59</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>>60</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
</tbody>
</table>

Very low: Less than 5% pretest probability of CAD
Low: Less than 10% pretest probability of CAD
Intermediate: Between 10% and 90% pretest probability of CAD
High: Greater than 90% pretest probability of CAD

Coronary Heart Disease (CHD) Risk

- CHD Risk—Low
 - Defined by the age-specific risk level that is below average. In general, low risk will correlate with a 10-year absolute CHD risk less than 10%.
- CHD Risk—Moderate
 - Defined by the age-specific risk level that is average or above average. In general, moderate risk will correlate with a 10-year absolute CHD risk between 10% and 20%.
- CHD Risk—High
 - Defined as the presence of diabetes mellitus or the 10-year absolute CHD risk of greater than 20%.

Definition of Peripheral Arterial Disease/Cerebrovascular Disease:

Non-coronary arterial narrowing causing symptoms (claudication, related tissue demise, threatened limb loss), asymptomatic 70% or more narrowing by non-invasive or invasive evaluation, atherosclerotic arterial aneurysm by non-invasive or invasive evaluation, or aortic atheroma of at least 4 mm thickness. As a subset of peripheral arterial disease, cerebrovascular disease is also defined as a history of stroke or TIA.

Global CAD Risk:

It is assumed that clinicians will use current standard methods of global risk assessment in the asymptomatic patient for primary prevention, **based upon Framingham:ATP IV, Reynolds, Pooled Cohort Equation (includes cerebrovascular risk), ACC/AHA Risk Calculator, MESA Risk Calculator (includes calcium score), or very similar risk calculator**. CAD risk refers to 10-year risk for any hard cardiac event (e.g., myocardial infarction or CAD death).

- Low global CAD risk
Defined by the age-specific risk level that is below average. In general, low risk will correlate with a 10-year absolute CAD risk <10%. However, in women and younger men, low risk may correlate with a 10-year absolute CAD risk <6%.

- **Intermediate global CAD risk**
 Defined by the age-specific risk level that is average. In general, moderate risk will correlate with a 10-year absolute CAD risk range of 10% to 20%. Among women and younger age men, an expanded intermediate risk range of 6% to 20% may be appropriate.

- **High global CAD risk**
 Defined by the age-specific risk level that is above average. In general, high risk will correlate with a 10-year absolute CAD risk of >20%. CAD equivalents (e.g., peripheral arterial disease (defined in additional information), cerebrovascular disease (history of stroke or TIA), or multiple simultaneous anti-rejection medications (e.g., cyclosporine, tacrolimus, mycophenolate mofetil, azathiprine, long term supraphysiologic doses of glucocorticoids, but not everolimus or sirolimus/rapamycin), peripheral arterial disease) can also define high risk. High global risk can be further defined by **COMPELLING NON-INVASIVE DATA, such as clearly pathologic Q waves on the EKG, marked ST-segment and/or T wave abnormalities of myocardial ischemia without symptoms, clear regional wall motion abnormalities of the left ventricle, or reduced ejection fraction below 50%**.

Peri-Operative Cardiac Risk Factors

These are specifically: ischemic coronary artery disease (by study more than two years ago with lesions, which are >=70% or ischemia producing on prior stress testing or with FFR <=0.80), cerebrovascular disease, insulin-requiring diabetes mellitus, history of congestive heart failure or ejection fraction less than 40%, or CKD with creatinine >= 2 mg/dl.

Duke Treadmill Score

The equation for calculating the Duke treadmill score (DTS) is,

\[
DTS = \text{exercise time} \times (5 \times \text{ST deviation}) - (4 \times \text{exercise angina}),
\]

with 0 = none, 1 = non limiting, and 2 = exercise limiting.

The score typically ranges from -25 to +15. These values correspond to low-risk (with a score of >= +5), intermediate risk (with scores ranging from 10 to +4), and high-risk (with a score of <= -11) categories.

The Duke Score provides an annual mortality estimate: <1% for low risk, 1-3% for intermediate risk, and >3% for high risk.

Determinante of a 4 MET functional capacity:

Examples of activities:

- **<4 METs:** Slow ballroom dancing, golfing with a cart, playing a musical instrument, and walking at approximately 2 mph to 3 mph

- **>4 METs:** Climbing a flight of stairs or walking up a hill, walking on level ground at 4 mph, and performing heavy work around the house

Tools for Characterization of Unstable Angina:

Risk Stratification in Acute Coronary Syndrome from 2007 ACC/AHA Guidelines

Three Principal Presentations of Unstable Angina (as defined within a two week time frame) (Braunwald)
Table 6: Likelihood that Symptoms Represent an Acute Coronary Syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>High Likelihood</th>
<th>Intermediate Likelihood</th>
<th>Low Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>Any of the following:</td>
<td>Any of the following:</td>
<td>Any of the following:</td>
</tr>
<tr>
<td>History</td>
<td>chest pain or discomfort, chest pain for more than 20 min, MI, or CAD</td>
<td>chest pain or discomfort, chest pain for more than 20 min, MI, or CAD</td>
<td>chest pain or discomfort, chest pain for more than 20 min, MI, or CAD</td>
</tr>
<tr>
<td>Examination</td>
<td>transient ischemic attack, diabetes, hypertension, obesity, or history of CAD</td>
<td>transient ischemic attack, diabetes, hypertension, obesity, or history of CAD</td>
<td>transient ischemic attack, diabetes, hypertension, obesity, or history of CAD</td>
</tr>
<tr>
<td>ECG</td>
<td>new ST segment elevation</td>
<td>new ST segment elevation</td>
<td>new ST segment elevation</td>
</tr>
<tr>
<td>Cardiac markers</td>
<td>elevated cardiac markers (T, T, or CK-MB)</td>
<td>elevated cardiac markers (T, T, or CK-MB)</td>
<td>elevated cardiac markers (T, T, or CK-MB)</td>
</tr>
</tbody>
</table>

Table 7: Short Term Risk of Death or Nonfatal MI in Acute Coronary Syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>High Risk</th>
<th>Intermediate Risk</th>
<th>Low Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>At least 1 of the following must be present:</td>
<td>No high-risk feature, but must have 1 of the following:</td>
<td>No high or intermediate-risk feature but may have any of the following:</td>
</tr>
<tr>
<td>History</td>
<td>Acute MI, pericarditis, or ischemic insult</td>
<td>increased age, history of CAD, or diabetes</td>
<td>increased age, history of CAD, or diabetes</td>
</tr>
<tr>
<td>Character of pain</td>
<td>acute MI, pericarditis, or ischemic insult</td>
<td>increased age, history of CAD, or diabetes</td>
<td>increased age, history of CAD, or diabetes</td>
</tr>
<tr>
<td>DCM</td>
<td>acute MI, pericarditis, or ischemic insult</td>
<td>increased age, history of CAD, or diabetes</td>
<td>increased age, history of CAD, or diabetes</td>
</tr>
<tr>
<td>Cardiac markers</td>
<td>elevated cardiac markers (T, T, or CK-MB)</td>
<td>elevated cardiac markers (T, T, or CK-MB)</td>
<td>elevated cardiac markers (T, T, or CK-MB)</td>
</tr>
</tbody>
</table>

© 2017 Magellan Healthcare

Proprietary

Page 199 of 318
The TIMI Risk Score is determined by the sum of the presence of 7 variables at admission: 1 point is given for each of the following variables: age ≥65 years, at least 3 risk factors for CAD, prior coronary stenosis of ≥50%, ST-segment deviation on ECG presentation, at least 2 anginal events in prior 24 hours, use of aspirin in prior 7 days, and elevated serum cardiac biomarkers.

Low-Risk TIMI Score: TIMI score <2; **High-Risk TIMI Score:** TIMI score ≥2. A low risk TIMI score might still warrant invasive coronary arteriography, when other features, such as symptoms, are compelling.

Request for a follow-up study – A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Metal devices or foreign body fragments – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

Cardiomyopathy – Cardiac MRI is used to diagnose and differentiate cardiomyopathies in the same study. Very small morphological and functional changes in different types of cardiomyopathy may be detected and may be used to evaluate the chance of functional recovery after surgical revascularization.

Cardiac Tumors – MRI is the modality of choice to evaluate cardiac tumors due to its high contrast resolution and multiplanar capability which allows for optimal evaluation of myocardial infiltration, pericardial involvement and extracardiac vascular structures within and beyond the thorax. It is also useful in the differentiation of benign and malignant cardiac tumors and in differentiating thrombi from cardiac tumors.

Pericardial abnormalities – Complicated pericardial diseases may cause significant morbidity and mortality without therapeutic interventions. MRI imaging has an important role in the evaluation of pericardial abnormalities: the pericardium is well visualized on MRI due to its superb contrast resolution and multiplanar capability.

REFERENCES

Blue Shield CA Med Policy: 6.01.03

CPT Codes: 75571, S8092

“FOR BLUE SHIELD CA MEMBERS ONLY”

INDICATIONS FOR EBCT:

The use of unenhanced cardiac computed tomography (CT) (e.g., electron beam CT (EBCT) or multidetector CT (MDCT)) to detect coronary artery calcification is considered investigational.
Blue Shield of California Medical Policy 6.01.43

CPT Codes: 75572, 75573

“FOR BLUE SHIELD CA MEMBERS ONLY”

Indications for Cardiac (Heart) CT:

- Characterization of native or prosthetic cardiac valves with suspected clinically significant valvular dysfunction and inadequate images from other non-invasive methods.
- Evaluation of cardiac mass (suspected tumor or thrombus) for patients with technically limited images from echocardiogram, magnetic resonance imaging (MRI), or transesophageal echocardiogram (TEE).
- Evaluation of congenital heart disease.
- Evaluation of pericardial conditions (pericardial mass, constrictive pericarditis, or complications of cardiac surgery) for patients with technically limited images from echocardiogram, MRI, or TEE.
- Evaluation of pulmonary vein anatomy prior to invasive radiofrequency ablation for atrial fibrillation.
- Non-invasive coronary vein mapping prior to placement of biventricular pacemaker.
- Non-invasive coronary arterial mapping, including internal mammary artery prior to repeat cardiac surgical revascularization.
CPT Codes: 75574

INTRODUCTION:

Coronary computed tomographic angiography (CCTA) is a noninvasive imaging study that uses intravenously administered contrast material and high-resolution, rapid imaging CT equipment to obtain detailed volumetric images of blood vessels. CTA can image blood vessels throughout the body. However, imaging of the coronary vasculature requires shorter image acquisition times to avoid blurring from the motion of the beating heart. The advanced spatial and temporal resolution features of these CT scanning systems offer a unique method for imaging the coronary arteries and the heart in motion, and for detecting arterial calcification that contributes to coronary artery disease.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

The table below correlates and matches the clinical indications with the Appropriate Use Score based on a scale of 4 to 9, where the upper range (7 to 9) implies that the test is generally acceptable and is a reasonable approach. The mid-range (4 to 6) indicates uncertainty in the appropriateness of the test for the clinical scenario. In all cases, additional factors should be taken into account including but not limited to cost of test, impact of the image on clinical decision making when combined with clinical judgment and risks, such as radiation exposure and contrast adverse effects, should be considered.

Where the CCTA is the preferred test based upon the indication, the Appropriate Use Score will be in the upper range such as noted with indication # 46, Assessment of anomalies of coronary arterial and other thoracic arteriovenous vessels.

AN IMPORTANT COMMENT ON THE CONCEPT OF RISK:

It is important to adhere to the concept of risk in making appropriateness determinations. However, the terminology for risk assessment must be clarified here.

An asymptomatic patient should be assessed for GLOBAL RISK, using an accepted calculator, as listed in the references section, with available links to those calculators. Asymptomatic patients with known calcium scores should have their GLOBAL RISK assessed with the MESA calculator.

Symptomatic patients are assessed based upon whether their presentation is acute/subacute or stable/nonacute. The assessment of the stable/nonacute patient is referred to as the PRETEST PROBABILITY of coronary artery disease (CAD). Once tested, the patient has a POST-TEST PROBABILITY of coronary artery disease. The POST-TEST PROBABILITY becomes the PRETEST PROBABILITY for any subsequent test for coronary artery disease. For example, a DUKE score of negative 10 to positive 4 represents intermediate risk.

When the presentation is acute/subacute, the means of assessment for such potential acute coronary syndromes typically involves conventional history and physical, EKG, biomarkers, etc., and if no actionable diagnosis has been established at that point, the patient is generally considered to be at an
equivocal or low-to-intermediate risk for an acute coronary syndrome, for which further imaging, such as CCTA, might be appropriate.

When there has been an actionable diagnosis of an acute coronary syndrome, separate risk categorizations for that scenario apply.

ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2010 APPROPRIATE USE SCORE CRITERIA for CCTA, with clarifications added, along with incorporation of the 2015 ACR/ACC/AHA/AATS/ACEP/ASNC/NASCI/SAEM/SCCT/SCMR/SCPC/SNMMI/STR/STS Appropriate Utilization of Cardiovascular Imaging in Emergency Department Patients With Chest Pain:

<table>
<thead>
<tr>
<th>ACCF et al. Criteria #</th>
<th>CCTA (Indication and Appropriate Use Score)</th>
<th>INDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable/Nonacute Symptoms Possibly Representing an Ischemic Equivalent</td>
<td></td>
<td>(*Refer to Additional Information section)</td>
</tr>
<tr>
<td>1 I(1-3)</td>
<td></td>
<td>Detection of CAD in Symptomatic Patients Without Known Heart Disease</td>
</tr>
<tr>
<td>1 U(4-6)</td>
<td></td>
<td>Stable/Nonacute Symptoms Possibly Representing an Ischemic Equivalent</td>
</tr>
<tr>
<td>2 U(4-6)</td>
<td></td>
<td>Stable/Nonacute Symptoms Possibly Representing an Ischemic Equivalent</td>
</tr>
<tr>
<td>2 A(8)</td>
<td></td>
<td>Stable/Nonacute Symptoms Possibly Representing an Ischemic Equivalent</td>
</tr>
<tr>
<td>2 U(4-6)</td>
<td></td>
<td>Stable/Nonacute Symptoms Possibly Representing an Ischemic Equivalent</td>
</tr>
<tr>
<td>Acute Symptoms With Suspicion of ACS (Urgent Presentation) after Standard Evaluation Has Not Resulted in an Actionable Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 U(6)</td>
<td></td>
<td>Acute Symptoms With Suspicion of ACS (Urgent Presentation) after Standard Evaluation Has Not Resulted in an Actionable Diagnosis</td>
</tr>
<tr>
<td>5 A(7-9)</td>
<td></td>
<td>If one of the following apply:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acute chest pain of uncertain cause (differential diagnosis includes pulmonary embolism, aortic dissection, and ACS [triple rule out])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Equivocal diagnosis due to single troponin elevation without additional evidence of ACS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Equivocal diagnosis with ischemic symptoms resolved hours before testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low-to-intermediate likelihood of ACS based upon TIMI RISK Score = 0, with early high sensitivity troponin negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low-to-intermediate likelihood of ACS based upon normal/nonischemic initial EKG and normal initial troponin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SERIAL EKGS and troponins negative or if either is borderline for NSTEMI/ACS</td>
</tr>
<tr>
<td>ACCF et al. Criteria # CCTA (Indication and Appropriate Use Score)</td>
<td>INDICATIONS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>5 U(4-6)</td>
<td>• Diagnosis unequivocally positive for ACS, but this category should be reserved for patients in whom invasive coronary arteriography would be considered at least relatively contraindicated</td>
<td></td>
</tr>
</tbody>
</table>

| 6 Acute Symptoms with Suspicion of ACSx (Urgent Presentation), when the History Reveals a Particular Pretest Probability |
|---|---|
| Low/Int Pretest Probability* A(7) High Pretest Probability* U(4) | • Acute symptoms, possibly representing an ischemic equivalent AND Normal ECG and cardiac biomarkers (troponin and CPK/CPK-MB) |

| 7 Low/Int Pretest Probability* A(7) High Pretest Probability* U(4) | • Acute symptoms, possibly representing an ischemic equivalent AND ECG uninterpretable |

| 8 Low/Int Pretest Probability* A(7) High Pretest Probability* U(4) | • Acute symptoms, possibly representing an ischemic equivalent AND Nondiagnostic ECG or equivocal cardiac biomarkers |

<table>
<thead>
<tr>
<th>Additional CAD/Risk Assessment, Based Upon Pre-existing GLOBAL RISK, in ASYMPTOMATIC Individuals Without Known CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Noncontrast CT for Coronary Calcium Score</td>
</tr>
<tr>
<td>Intermediate Global Risk (10-20%, or 6-20% in women and younger men)** U(4-6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coronary CTA with Contrast in the Asymptomatic Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 High Global Risk (>20%) U(4-6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coronary CTA Following Heart Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 U(6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detection of CAD in Other Clinical Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>New-Onset or Newly Diagnosed Clinical HF and No Prior CAD</td>
</tr>
<tr>
<td>ACCF et al. Criteria #</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Preoperative Coronary Assessment Prior to Noncoronary Cardiac Surgery

15	**A(7-9)**	If all the following apply:
		• Coronary evaluation before thoracoabdominal aortic surgery
		• Patient has less than a 4 MET functional capacity
		• Patient has one peri-operative risk factor
		• No coronary evaluation (invasive or non-invasive) within the past year
		• If invasive coronary arteriography is preferable, then CCTA is not appropriate
		• Alternatively, without the need for the above criteria, patient would be a candidate for CCTA at the time of a preoperative evaluation if indications unrelated to the surgery were well documented in the clinical record

Arrhythmias—Etiology Unclear After Initial Evaluation

17	**(1-3)**	Any one of the following:
		• Infrequent PVCs
		• New Onset atrial fibrillation

17	**U(4-6)**	Any one of the following:
		• Exercise induced or nonsustained ventricular tachycardia
		• Ventricular fibrillation
		• Sustained VT
		• Frequent PVCs (>30/hr)
		• Prior to initiation of antiarrhythmic therapy in high global risk (CAD) patients

| 18 | **I(1-3)** | Syncope |
| | | • Low Global CAD risk |

| 18 | **U(4-6)** | Syncope |
| | | • Intermediate and High global CAD risk** initial evaluation includes echocardiogram |

Elevated Troponin of Uncertain Clinical Significance

| 19 | **U(6)** | Elevated troponin without additional evidence of ACS or symptoms suggestive of CAD |

Use of CTA in the Setting of Prior Test Results

Prior ECG or ECG Exercise Testing

<p>| 20 | A(7) | Normal ECG exercise test AND Continued symptoms |</p>
<table>
<thead>
<tr>
<th>ACCF et al. Criteria # CCTA (Indication and Appropriate Use Score)</th>
<th>INDICATIONS (*Refer to Additional Information section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 A(7)</td>
<td>• Prior ECG exercise AND Intermediate mortality risk*** based upon Duke Treadmill Score</td>
</tr>
<tr>
<td>U(4-6)</td>
<td>• Abnormal rest ECG (highly concerning for ischemia, without clear indication for invasive coronary arteriography) • LEFT BUNDLE BRANCH BLOCK, when the history, physical examination, and/or noninvasive ejection fraction together support further evaluation, and invasive coronary arteriography is not already indicated, is an indication for stress imaging (MPI or echo).</td>
</tr>
</tbody>
</table>

Sequential Testing After Stress Imaging Procedures

| 22 A(8) | • Discordant ECG exercise and imaging results |

| 23 Equivocal for Ischemia A(8) Mild Ischemia U(6) | • Prior stress ECG or stress imaging results: |

Prior CCS

| • No longer applicable. • Use MESA Global Risk Calculator and base decision on Global Risk |

Evaluation of New or Worsening Symptoms in the Setting of Past Stress Imaging Study

| 29 A(7-9) | • Previous stress ECG or stress imaging study abnormal when a noninvasive approach is preferable to proceeding to invasive coronary arteriography (unclear nature of symptoms, mildly abnormal or borderline EKG stress test or stress with echocardiogram/MPI, CKD, dye allergy, etc.) • Previous stress ECG study normal when a noninvasive approach is preferable to proceeding to invasive coronary arteriography (unclear nature of symptoms, mildly abnormal or borderline EKG stress test or stress with echocardiogram/MPI, CKD, dye allergy, etc.) • Previous stress imaging study normal within the past 2 years and currently compelling coronary history or symptoms should be considered appropriate indication for a CCTA, particularly if there are reasons to avoid cardiac catheterization (CKD, dye allergy, etc.), unless invasive coronary arteriography is strongly indicated (e.g. compelling presentation of moderate or high risk unstable angina). |

Risk Assessment Preoperative Evaluation of Noncardiac Surgery Without Active Cardiac Conditions

Intermediate-Risk Surgery

| • See indication #15. |

Vascular Surgery

| • See indication #15. |
ACCF et al. Criteria
CCTA (Indication and Appropriate Use Score)

<table>
<thead>
<tr>
<th>Risk Assessment Post revascularization (PCI or CABG)</th>
<th>INDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic (Ischemic Equivalent) Post Coronary Revascularization</td>
<td>(*Refer to Additional Information section)</td>
</tr>
<tr>
<td>39 U(4-6)</td>
<td>• Evaluation of graft patency after CABG or evaluation post percutaneous coronary intervention, with good documentation of symptomatic presentation, are indications for CCTA if it could affect management</td>
</tr>
<tr>
<td>42 U(4-6)</td>
<td>• Prior left main coronary stent</td>
</tr>
<tr>
<td>Evaluation of Cardiac Structure and Function</td>
<td></td>
</tr>
<tr>
<td>Adult Congenital Heart Disease</td>
<td></td>
</tr>
<tr>
<td>46 A(9)</td>
<td>• Assessment of anomalies of coronary arterial and other thoracic arteriovenous vessels. This includes long term follow-up of Kawasaki disease for aneurysm formation. ♦</td>
</tr>
<tr>
<td>(*for “anomalies of coronary arterial vessels” CCTA preferred and for “other thoracic arteriovenous vessels” Heart CT preferred)</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Intra- and Extracardiac Structures</td>
<td></td>
</tr>
<tr>
<td>60 A(8)</td>
<td>• Localization of coronary bypass grafts and other retrosternal anatomy♦</td>
</tr>
<tr>
<td>• Prior to preoperative chest or cardiac surgery</td>
<td></td>
</tr>
<tr>
<td>(*for “localization of coronary bypass grafts” CCTA preferred and for “other retrosternal anatomy” Heart CT preferred)</td>
<td></td>
</tr>
</tbody>
</table>

INDICATIONS FOR CORONARY CT ANGIOGRAPHY (CCTA):
- CCTA may be appropriately used when evaluating chest pain syndromes with low to intermediate risk CAD profiles such as in emergency room or observation unit situations.
- CCTA maybe an appropriate substitution exam for a left heart catheterization.

INDICATIONS IN ACC GUIDELINES WITH “INAPPROPRIATE” DESIGNATION:
The patient must meet ACCF/ASNC Appropriateness criteria for inappropriate indications (median score 1 – 3) below OR meets any one of the following:
- Contra-indications to beta blockers used to slow heart rate during procedure.
- Acute chest pain/angina (*Patients with acute angina/chest pain may need to go directly to catheterization. Refer for MD Review*).
- Pre-op request for non-cardiac surgery
- Significant premature ventricular contractions, significant frequent atrial fibrillation, or relative contra-indication to CCTA
ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2010 APPROPRIATE USE SCORE CRITERIA:

<table>
<thead>
<tr>
<th>ACCF et al. Criteria #</th>
<th>INDICATIONS</th>
<th>PROPER USE SCORE (1-3); I=Inappropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTA</td>
<td></td>
<td>Refer to Additional Information section</td>
</tr>
<tr>
<td>Detection of CAD in Symptomatic Patients Without Known Heart Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>• High pretest probability of CAD*</td>
<td>I(3)</td>
</tr>
<tr>
<td></td>
<td>• ECG interpretable and able to exercise</td>
<td></td>
</tr>
<tr>
<td>Nonacute Symptoms Possibly Representing an Ischemic Equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Acute Symptoms With Suspicion of ACS (Urgent Presentation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• Definite MI</td>
<td>I(1)</td>
</tr>
<tr>
<td>Detection of CAD/Risk Assessment in Asymptomatic Individuals Without Known CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>• Low global CHD risk estimate**</td>
<td>I(2)</td>
</tr>
<tr>
<td>Coronary CTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>• Low or Intermediate global CHD risk estimate**</td>
<td>I(2)</td>
</tr>
<tr>
<td>Detection of CAD in Other Clinical Scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>• High pretest probability of CAD*</td>
<td>I(3)</td>
</tr>
<tr>
<td></td>
<td>• Coronary evaluation before noncoronary cardiac surgery</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>• New-onset atrial fibrillation (atrial fibrillation is underlying rhythm during imaging)</td>
<td>I(2)</td>
</tr>
<tr>
<td>Use of CTA in the Setting of Prior Test Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>• Prior ECG exercise testing</td>
<td>I(2)</td>
</tr>
<tr>
<td></td>
<td>• Duke Treadmill Score—low risk findings</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>• Prior ECG exercise testing</td>
<td>I(3)</td>
</tr>
<tr>
<td></td>
<td>• Duke Treadmill Score—high risk findings</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>• Stress imaging results: moderate or severe ischemia</td>
<td>I(2)</td>
</tr>
<tr>
<td>ACCF et al. Criteria # CTA</td>
<td>INDICATIONS (*Refer to Additional Information section)</td>
<td>PROPRIATE USE SCORE (1-3); I=Inappropriate</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Prior CCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>• Positive Coronary Calcium Score >2 y ago</td>
<td>I(2)</td>
</tr>
<tr>
<td>Periodic Repeat Testing in Asymptomatic OR Stable Symptoms With Prior Stress Imaging or Coronary Angiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>• No known CAD</td>
<td>I(2)</td>
</tr>
<tr>
<td></td>
<td>• Last study done <2 y ago</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>• No known CAD</td>
<td>I(3)</td>
</tr>
<tr>
<td></td>
<td>• Last study done ≥2 y ago</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>• Known CAD</td>
<td>I(2)</td>
</tr>
<tr>
<td></td>
<td>• Last study done <2 y ago</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>• Known CAD</td>
<td>I(3)</td>
</tr>
<tr>
<td></td>
<td>• Last study done ≥2 y ago</td>
<td></td>
</tr>
<tr>
<td>Risk Assessment Preoperative Evaluation of Noncardiac Surgery Without Active Cardiac Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Risk Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>• Preoperative evaluation for noncardiac surgery risk assessment, irrespective of functional capacity</td>
<td>I(1)</td>
</tr>
<tr>
<td>Intermediate-Risk Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>• No clinical risk predictors</td>
<td>I(2)</td>
</tr>
<tr>
<td>32</td>
<td>• Functional capacity ≥4 METs</td>
<td>I(2)</td>
</tr>
<tr>
<td>34</td>
<td>• Asymptomatic <1 y following a normal coronary angiogram, stress test, or a coronary revascularization procedure</td>
<td>I(1)</td>
</tr>
<tr>
<td>Vascular Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>• No clinical risk predictors</td>
<td>I(2)</td>
</tr>
<tr>
<td>36</td>
<td>• Functional capacity ≥4 METs</td>
<td>I(2)</td>
</tr>
<tr>
<td>38</td>
<td>• Asymptomatic <1 y following a normal coronary angiogram, stress test, or a coronary revascularization procedure</td>
<td>I(2)</td>
</tr>
<tr>
<td>Risk Assessment Post revascularization (PCI or CABG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic (Ischemic Equivalent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>• Prior coronary stent with stent diameter <3 mm or not known</td>
<td>I(3)</td>
</tr>
<tr>
<td>Asymptomatic—CABG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACCF et al. Criteria # CCTA

INDICATIONS

(*Refer to Additional Information section)

<table>
<thead>
<tr>
<th>ACCF et al. Criteria #</th>
<th>INDICATIONS</th>
<th>PROPRIETE USE SCORE (1-3): I=Inappropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Prior coronary bypass surgery <5 y ago</td>
<td>I(2)</td>
</tr>
<tr>
<td>44</td>
<td>Prior coronary stent with stent diameter <3 mm or not known</td>
<td>I(2)</td>
</tr>
<tr>
<td>45</td>
<td>Prior coronary stent with stent diameter ≥3 mm</td>
<td>I(3)</td>
</tr>
<tr>
<td>46</td>
<td>Prior coronary stent with stent diameter not known</td>
<td>I(2)</td>
</tr>
<tr>
<td>47</td>
<td>Less than 2 y after PCI</td>
<td>I(2)</td>
</tr>
</tbody>
</table>

Evaluation of Cardiac Structure and Function

Evaluation of Ventricular Morphology and Systolic Function

| 48 | Initial evaluation of left ventricular function | I(2) |
| 49 | Following acute MI or in HF patients | I(2) |

Evaluation of Intra- and Extracardiac Structures

| 55 | Initial evaluation of cardiac mass (suspected tumor or thrombus) | I(3) |

ADDITIONAL INFORMATION RELATED TO CORONARY CT ANGIOGRAPHY:

Abbreviations

ACS = acute coronary syndrome
CABG = coronary artery bypass grafting surgery
CAD = coronary artery disease
CCS = coronary calcium score
CHD = coronary heart disease
CT = computed tomography
CTA = computed tomography angiography
ECG = electrocardiogram
HF = heart failure
MET = estimated metabolic equivalent of exercise
MI = myocardial infarction
MPI = Myocardial Perfusion Imaging
PCI = percutaneous coronary intervention
SE = Stress Echocardiogram
TTE = Transthoracic Echocardiography

What is a valid anginal or ischemic equivalent?

Development of an anginal equivalent (e.g. shortness of breath, fatigue, or weakness) either with or without prior coronary revascularization should be based upon the documentation of reasons to suspect that symptoms other than chest discomfort are not due to other organ systems (e.g. dyspnea due to lung
disease, fatigue due to anemia, etc.), by presentation of clinical data such as respirator rate, oximetry, lung exam, etc. (as well as d-dimer, chest CT(A), and/or PPTs, when appropriate), and then incorporated into the evaluation of coronary artery disease as would chest discomfort. Syncope by itself is generally not considered an anginal equivalent, and is handled under a separate category in this guideline.

Exercise Treadmill Testing: Exercise Treadmill Testing (ETT) is the appropriate first line test in most patients with suspected CAD. In appropriately selected patients the test provides adequate sensitivity and specificity with regard to diagnosis and prognostication. There are patients in whom the test is not the best choice, for example those with resting ECG abnormalities, inability to exercise and perhaps diabetes. Also of note from an operational standpoint the test does not require pre-authorization.

An uninterpretable baseline EKG includes:

- Abnormalities of ST segment depression of 0.1 mV (1 mm with conventional calibration) or more
- Ischemic looking T wave inversions of at least 0.25 mV (2.5 mm with conventional calibration)
- EKG findings of probable or definite LVH, WPW, a ventricular paced rhythm, or left bundle branch block
- Digitalis use or hypokalemia
- Resting HR under 50 bpm on a beta blocker and an anticipated suboptimal workload (e.g. rate-pressure product less than 20-25K)
- Prior false positive stress EKG

Pretest Probability of CAD for Symptomatic (Ischemic Equivalent) Patients:

- **Typical Angina (Definite):** Defined as 1) substernal chest pain or discomfort that is 2) provoked by exertion or emotional stress and 3) relieved by rest and/or nitroglycerin.
- **Atypical Angina (Probable):** Chest pain or discomfort that lacks 1 of the characteristics of definite or typical angina.
- **Nonanginal Chest Pain:** Chest pain or discomfort that meets 1 or none of the typical angina characteristics.

Once the presence of symptoms (Typical Angina/Atypical Angina/Non angina chest pain/Asymptomatic) is determined, the pretest probabilities of CAD can be calculated from the risk algorithms as follows:

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Gender</th>
<th>Typical/Definite Angina Pectoris</th>
<th>Atypical/Probable Angina Pectoris</th>
<th>Nonanginal Chest Pain</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td><39</td>
<td>Men</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>40–49</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>50–59</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>>60</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
</tbody>
</table>

- **Very low:** Less than 5% pretest probability of CAD
- **Low:** Less than 10% pretest probability of CAD
- **Intermediate:** Between 10% and 90% pretest probability of CAD
Definition of Peripheral Arterial Disease/Cerebrovascular Disease:

Non-coronary arterial narrowing causing symptoms (claudication, related tissue demise, threatened limb loss), asymptomatic 70% or more narrowing by non-invasive or invasive evaluation, atherosclerotic arterial aneurysm by non-invasive or invasive evaluation, or aortic atheroma of at least 4 mm thickness. As a subset of peripheral arterial disease, cerebrovascular disease is also defined as a history of stroke or TIA.

Global CAD Risk:

It is assumed that clinicians will use current standard methods of global risk assessment in the asymptomatic patient for primary prevention, based upon Framingham-ATP IV, Reynolds, Pooled Cohort Equation (includes cerebrovascular risk), ACC/AHA Risk Calculator, MESA Risk Calculator (includes calcium score), or very similar risk calculator) CAD risk refers to 10-year risk for any hard cardiac event (e.g., myocardial infarction or CAD death).

- **Low global CAD risk**
 Defined by the age-specific risk level that is below average. In general, low risk will correlate with a 10-year absolute CAD risk <10%. However, in women and younger men, low risk may correlate with 10-year absolute CAD risk <6%.

- **Intermediate global CAD risk**
 Defined by the age-specific risk level that is average. In general, moderate risk will correlate with a 10-year absolute CAD risk range of 10% to 20%. Among women and younger age men, an expanded intermediate risk range of 6% to 20% may be appropriate.

- **High global CAD risk**
 Defined by the age-specific risk level that is above average. In general, high risk will correlate with a 10-year absolute CAD risk of >20%. CAD equivalents (e.g., peripheral arterial disease (defined in additional information), cerebrovascular disease (history of stroke or TIA), or multiple simultaneous anti-rejection medications (e.g. cyclosporine, tacrolimus, mycophenolate mofetil, azathioprine, long term supraphysiologic doses of glucocorticoids, but not everolimus or sirolimus/rapamycin), peripheral arterial disease) can also define high risk. High global risk can be further defined by COMPELLING NON-INVASIVE DATA, such as clearly pathologic Q waves on the EKG, marked ST-segment and/or T wave abnormalities of myocardial ischemia without symptoms, clear regional wall motion abnormalities of the left ventricle, or reduced ejection fraction below 50%.

Peri-Operative Cardiac Risk Factors

These are specifically ischemic coronary artery disease (by study more than two years ago with lesions, which are >=70% or ischemia producing on prior stress testing or with FFR <=0.80), cerebrovascular disease, insulin-requiring diabetes mellitus, history of congestive heart failure or ejection fraction less than 40%, or CKD with creatinine >= 2 mg/dl.

Duke Treadmill Score

The equation for calculating the Duke treadmill score (DTS) is:

\[DTS = \text{exercise time} \cdot (5 \times \text{ST deviation}) \cdot (4 \times \text{exercise angina}), \]

with 0 = none, 1 = non-limiting, and 2 = exercise-limiting.

The score typically ranges from -25 to +15. These values correspond to low risk (with a score of >= +5), intermediate risk (with scores ranging from -10 to +4), and high risk (with a score of <= -11) categories.
The Duke Score provides an annual mortality estimate: <1% for low risk, 1-3% for intermediate risk, and >3% for high risk.

Determinants of a 4 MET functional capacity:
Examples of activities:
- **<4 METs:** Slow ballroom dancing, golfing with a cart, playing a musical instrument, and walking at approximately 2 mph to 3 mph
- **>4 METs:** Climbing a flight of stairs or walking up a hill, walking on level ground at 4 mph, and performing heavy work around the house

Tools for Characterization of Unstable Angina:

Risk Stratification in Acute Coronary Syndrome from 2007 ACC/AHA Guidelines

Three Principal Presentations of Unstable Angina (as defined within a two week time frame) (Braunwald)

<table>
<thead>
<tr>
<th>Class</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest angina</td>
<td>Angina occurring at rest and prolonged, usually greater than 20 min</td>
</tr>
<tr>
<td>New-onset angina</td>
<td>New-onset angina of at least CCS class III severity</td>
</tr>
<tr>
<td>Increasing angina</td>
<td>Previously diagnosed angina that has become distinctly more frequent, longer in duration, or lower in threshold (i.e., increased by 1 or more CCS class to at least CCS class III severity)</td>
</tr>
</tbody>
</table>

Table 6: Likelihood that Symptoms Represent an Acute Coronary Syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>High Likelihood</th>
<th>Intermediate Likelihood</th>
<th>Low Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Chest or left arm pain or discomfort as chief symptom reproducing prior documented angina</td>
<td>Age greater than 70 years</td>
<td>Probable ischemic symptoms in absence of any of the intermediate likelihood characteristics</td>
</tr>
<tr>
<td>History</td>
<td>Known history of CAD, including MI</td>
<td>None</td>
<td>Reoccur cocaine use</td>
</tr>
<tr>
<td>Examination</td>
<td>Transient RR run, hypotension, dysphonia, pulmonary edema, or rales</td>
<td>Electrocardiographic findings</td>
<td>Chest discomfort reproduced by palpation</td>
</tr>
<tr>
<td>ECG</td>
<td>New or presumably new, transient ST-segment deviation (1 mm or greater) or T-wave inversion in multiple precordial leads</td>
<td>ST depression 0.5 to 1 mm or T-wave inversion greater than 3 mm</td>
<td>T-wave flattening or inversion less than 1 mm in leads with dominant R waves</td>
</tr>
<tr>
<td>Cardiac Markers</td>
<td>Elevated cardiac TnT, TnI, or CK-MB</td>
<td>Normal</td>
<td>Normal ECG</td>
</tr>
</tbody>
</table>

ACS = acute coronary syndrome; CAD = coronary artery disease; CK-MB = Myo fraction of creatinine kinase; ECG = electrocardiogram; MI = myocardial infarction; PCI = percutaneous intervention; TnI = troponin I; TnT = troponin T.
Table 7: Short Term Risk of Death or Nonfatal MI in Acute Coronary Syndrome

The **TIMI Risk Score** is determined by the sum of the presence of seven (7) variables at admission: 1 point is given for each of the following variables:

1. age ≥65 years,
2. at least 3 risk factors for CAD,
3. prior coronary stenosis of ≥50%,
4. ST-segment deviation on ECG presentation,
5. at least two anginal events in prior 24 hours,
6. use of aspirin in prior 7 days, and
7. elevated serum cardiac biomarkers

Low-Risk TIMI Score: TIMI score <2; **High-Risk TIMI Score**: TIMI score ≥2. A low risk TIMI score might still warrant invasive coronary arteriography, when other features, such as symptoms, are compelling.

Risk Calculators - Links to Cardiac/Vascular Risk Online Calculators:

Framingham-ATP IV:
http://cvdrisk.nhlbi.nih.gov/

Reynolds Risk Score (Adds in family history):
http://www.reynoldsriskscore.org/

Pooled Cohort Equation (includes cardiac and cerebrovascular risk):

http://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx?example
ACC/AHA Risk Calculator (includes cardiac and cerebrovascular risk):
http://tools.acc.org/ASCVD-Risk-Estimator/

MESA Risk Calculator with addition of Coronary Artery Calcium Score:
https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx

REFERENCES

CCTA in the ER

Calcium Scoring

Reference for Kawasaki Disease

CPT Codes: 75635

INTRODUCTION:

Computed tomography angiography (CTA) provides a cost-effective and accurate imaging assessment in patients with suspected thoracic aortic aneurysms, aortic dissections or peripheral arterial disease. Early detection and treatment of a thoracic aortic aneurysm is important as it may rupture or dissect resulting in life-threatening bleeding. High resolution CTA may be used in the diagnosis and follow-up of patients with aortic dissection and lower extremity peripheral arterial disease (PAD).

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMINAL ARTERIES CTA:

For evaluation of known or suspected abdominal vascular disease:
- For known or suspected peripheral arterial disease.
- Significant ischemia that could be related to the presence of an ulcer, gangrene or significant claudication.

Pre-operative evaluation:
- Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.

Post-operative or post-procedural evaluation:
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts.
- Follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

ADDITIONAL INFORMATION RELATED TO ABDOMINAL ARTERIES CTA:

Abd/Pelvis CTA & Lower Extremity CTA Runoff Requests: Only one authorization request is required, using CPT Code 75635 Abdominal Arteries CTA. This study provides for imaging of the abdomen, pelvis and both legs. The CPT code description is CTA aorto-iliofemoral runoff: abdominal aorta and bilateral ilio-femoral lower extremity runoff.

Thoracic Aortic Aneurysm – CTA is useful in diagnosing thoracic aortic aneurysms, determining their extent, and predicting best treatment. The Dual Source 64 slice CTA allows for removal of many artifacts on the images, thus improving image quality. Prior to initiating thoracic endovascular aneurysm repair for a ruptured aneurysm, CTA may assess the access route for device delivery.

Thoracic Aortic Dissection – Thoracic aortic dissection is difficult to diagnose as many other conditions share similar symptoms with dissection. It is the most common aortic life-threatening emergency and must be diagnosed and treated quickly. With a small amount of contrast medium, the 64-slice CT scanner can accurately locate aortic dissection and other vascular problems within a short period of time.
Suspected Peripheral Arterial Disease – CTA is an excellent tool to diagnose lower extremity peripheral arterial disease (PAD). Benefits include the fast scanning time and accurate detection of occlusions and stenoses.

REFERENCES:

TOC

76390 – MR Spectroscopy

Blue Shield CA Medical Policy 6.01.24

CPT Codes: 76390

“FOR BLUE SHIELD CA MEMBERS ONLY”

INDICATIONS FOR MRS:

- None. Magnetic resonance spectroscopy is considered *investigational* for all indications.
77012 – CT Needle Guidance
77021 – MRI Guidance for Needle Placement

IMPORTANT NOTE:
The CPT codes describe the CT or MRI “guidance” component of a diagnostic procedure. Requests for these services should always be approved. NIA does not review these for medical necessity.
Blue Shield California Medical Policy 6.01.29

CPT Codes:
Unilateral 77058
Bilateral 77059

“For Blue Shield CA Members Only”

Background
Magnetic resonance imaging (MRI) of the breast can be used for screening, detection, and/or diagnosis of breast cancer. It can be used as a replacement for mammography screening, or can be used as an additional imaging test alone or in combination with other imaging modalities.

MRI for Screening Purposes
MRI of the breast may be considered medically necessary for screening for breast cancer in patients with any of the following conditions:
- Known BRCA1 or BRCA2 mutation
- High risk of BRCA1 or BRCA2 mutation due to a known presence of the mutation in relatives
- Personal history of Li-Fraumeni syndrome, Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, or who have a first-degree relative with one of these syndromes
- High risk (lifetime risk greater than about 20% to 25% or 5-year risk of greater than or equal to 3%) of developing breast cancer as identified by models that are largely defined by family history
- Received radiation to the chest between 10 and 30 years of age

MRI for Diagnostic Purposes
MRI of the breast may be considered medically necessary for any of the following indications:
- For detection of a suspected occult breast primary tumor in patients with axillary nodal adenocarcinoma (i.e., negative mammography and physical exam)
- In patients with a new diagnosis of breast cancer to evaluate the contralateral breast when clinical and mammographic findings are normal
- For preoperative tumor mapping of the involved (ipsilateral) breast to evaluate the presence of multicentric disease in patients with clinically localized breast cancer who are candidates for breast-conservation therapy (see Policy Guidelines section)
- For presurgical planning in patients with locally advanced breast cancer before and after completion of neoadjuvant chemotherapy to permit tumor localization and characterization
- To determine the presence of pectoralis major muscle/chest wall invasion in patients with posteriorly located tumors
- To evaluate a documented abnormality of the breast before obtaining an MRI-guided biopsy when there is documentation that other methods, such as palpation or ultrasound, are not able to localize the lesion for biopsy.

MRI of the breast is considered investigational for all of the following indications:
- As a screening technique in average-risk patients
- As a screening technique for the detection of breast cancer when the sensitivity of mammography is limited (i.e., dense breasts, breast implants, scarring after treatment for breast cancer)

© 2017 Magellan Healthcare
Proprietary
Page 225 of 318
• For the diagnosis of low-suspicion findings on conventional testing not indicated for immediate biopsy and referred for short-interval follow-up
• For the diagnosis of a suspicious breast lesion in order to avoid biopsy
• To determine response during neoadjuvant chemotherapy in patients with locally advanced breast cancer
• For the evaluation of residual tumor in patients with positive margins after lumpectomy

Policy Guideline

• A first degree relative is defined as the parents, brothers, sisters, or children of an individual.
• Consideration of BRCA1 and BRCA2 gene mutation testing should be given for women who have a family history suspected of having the BRCA1 or BRCA2 mutation, which has not been identified. (For further reference see: Blue Shield of California Medical Policy - BRCA1 and BRCA2 Genetic Testing).

Risk Assessment Tools

If a risk assessment model value is not documented: Blue Shield of California (BSC) will use the National Cancer Institute (NCI) Breast Cancer Risk Assessment Tool available at:

*http://www.cancer.gov/bcrisktool/

A number of models can assist practitioners in estimating breast cancer risk using family history, including the Claus (Claus et al., 1994), modified Gail (Costantino et al., 1999), Tyrer (Tyrer et al., 2004), BRCAPRO (Parmigiani et al., 1998) models.

Note: The tool should not be used to calculate breast cancer risk for women who have already had a diagnosis of breast cancer, lobular carcinoma in situ (LCIS), or ductal carcinoma in situ (DCIS).

The member information required to calculate risk of breast cancer includes:

• Age
• Age at time of first menstrual period
• Age at time of her first live birth
• First degree relatives with a history of breast cancer
• History and number of breast biopsies performed
• Diagnosis of atypical hyperplasia with at least one breast biopsy
• Ethnicity/Race

BI-RADS Classification

BI-RADS refer to mammography assessment categories for management of abnormal mammograms which are (see Tables section for further detail):

• 0: Incomplete
• 1: Negative
• 2: Benign finding(s)
• 3: Probably benign
• 4: Suspicious abnormality
• 5: Highly suggestive of malignancy
• 6: Known biopsy - proven malignancy

Breast MRI exams should be performed and interpreted by an expert breast imaging team working together with the multidisciplinary oncology treatment team.
As noted, breast MRI exams require a dedicated breast coil and the use of contrast by radiologists familiar with the optimal timing sequences and other technical aspects of image interpretation. The breast MR imaging center should also have the ability to perform MRI-guided biopsy and/or wire localization of findings detected by MRI.

REFERENCES

Risk Factors based on National Cancer Institute Risk Assessment Tool: http://www.cancer.gov/bcrisktool/
The tool should not be used to calculate breast cancer risk for women who have already had a diagnosis of breast cancer, lobular carcinoma in situ (LCIS), or ductal carcinoma in situ (DCIS).
CPT Codes: 77084

INTRODUCTION:

Magnetic Resonance Imaging (MRI) is currently used for the detection of metastatic disease in the bone marrow. Whole body MRI, using moving tables and special coils to survey the whole body, is used for screening to search for primary tumors and metastases. The unique soft-tissue contrast of MRI enables precise assessment of bone marrow infiltration and adjacent soft tissues allowing detection of alterations within the bone marrow earlier than with other imaging modalities. MRI results in a high detection rate for both focal and diffuse disease, mainly due to its high sensitivity in directly assessing the bone marrow components: fat and water bound protons.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR BONE MARROW MRI:

- For vertebral fractures with suspected bone metastasis.
- For the diagnosis, staging and follow-up of patients with multiple myeloma and related disorders.

ADDITIONAL INFORMATION RELATED TO BONE MARROW MRI:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

General Information - MRI allows bone marrow components to be visualized and is the most sensitive technique for the detection of bone marrow pathologies. The soft-tissue contrast of MRI enables detection of alterations within the bone marrow before osseous destruction becomes apparent in CT. Whole-body MRI has been applied for bone marrow screening of metastasis as well as for systemic primary bone malignancies such as multiple myeloma and it should be used as the first-line imaging method for detecting skeletal involvement in patients with multiple myeloma. Sensitive detection is mandatory in order to estimate prognosis and to determine adequate therapy.

REFERENCES:

CPT Code: 78451, 78452, 78453, 78454, 78466, 78468, 78469, 78481, 78483, 78499

INTRODUCTION: This guideline is organized around seven clinical scenarios:

I. Suspected Coronary Artery Disease (CAD)
II. Incompletely Evaluated CAD
III. Follow-up of Known Ischemic CAD
IV. CAD in Presence of Other New Cardiac Concerns
V. Prior to Noncardiac Surgery
VI. Prior to Cardiac Rehabilitation or Exercise Program
VII. Post Cardiac Transplantation

This guideline is for stress imaging, specifically myocardial perfusion imaging (MPI), with appropriate preference for suitable alternatives, such as stress echocardiography (stress echo) or stress EKG alone, when more suitable, using the following stream of logic:

- A stress EKG alone is often appropriate. A baseline EKG which does not allow interpretation of ischemic findings with exercise will sometimes, but not always, require the addition of stress imaging.

- When stress imaging is appropriate, as an addition to stress EKG alone, stress echo is preferred when the patient is able to exercise, MPI when the patient cannot exercise. This document does not endorse dobutamine echocardiography for pragmatic reasons.

- When stress echo is precluded by specific imaging difficulties (e.g. poor quality image despite contrast medium, uncontrolled atrial fibrillation, ventricular paced rhythm, baseline wall motion abnormalities, etc., as listed in the Additional Information section), then MPI is preferable.

Compelling indications (e.g. ACC Class I or IIA or Appropriate Use Criteria ‘A’) for stress imaging (MPI and echo) are the foundation, and the less compelling indications (IIB or ‘M’) have been selected as appropriate for those scenarios in which the clinical presentation incurs high risk. If a patient fits two or more clinical scenarios, the scenario which endorses stress imaging (MPI or echo) supersedes any category which does not.

Issues such as pretest probability, global risk of coronary or cardiovascular disease, anginal equivalent, aspects of different types of stress testing, etc. are discussed in the Additional Information section at the end of this document, and the reader is encouraged to refer to that section, in order to optimally utilize this guideline.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.
INDICATIONS FOR STRESS IMAGING (MPI or ECHO) BY CLINICAL SCENARIO

I. SUSPECTED (CAD):

High Global Risk asymptomatic OR
Stable symptomatic OR
Low risk “unstable” symptomatic (Tables 6 & 7)

- SYMPTOMATIC: LOW PRETEST PROBABILITY patients should undergo a treadmill exercise stress EKG alone, with stress imaging (MPI or echo) reserved only for those unable to exercise OR with an uninterpretable EKG.

- SYMPTOMATIC: INTERMEDIATE OR HIGH PRETEST PROBABILITY patients are appropriate for stress imaging (MPI or echo).

- REPEAT STRESS TESTING FOR SIMILAR SYMPTOMS AND SAME PRETEST PROBABILITY should not be performed for at least 5 years following prior stress testing or invasive coronary arteriography, unless there has been a change in clinical presentation.

- ASYMPTOMATIC HIGH GLOBAL RISK (>20% coronary or vascular event rate over ensuing 10 years) based upon a COMPELLING HISTORY, such as patients with peripheral arterial disease (defined in additional information), cerebrovascular disease (history of stroke or TIA), or multiple simultaneous anti-rejection medications (e.g. cyclosporine, tacrolimus, mycophenolate mofetil, azathioprine, long term supraphysiologic doses of glucocorticoids, but not everolimus or sirolimus/rapamycin). should be assessed with EKG STRESS TEST alone. with stress imaging (MPI or echo) reserved only for those unable to exercise OR with an uninterpretable EKG.

- ASYMPTOMATIC HIGH GLOBAL RISK (>20% coronary or vascular event rate over ensuing 10 years, based upon Framingham-ATP IV, Reynolds, Pooled Cohort Equation (includes cerebrovascular risk), ACC/AHA Risk Calculator, MESA Risk Calculator (includes calcium score), or very similar risk calculator) or based upon COMPELLING NON-INVASIVE DATA, such as clearly pathologic Q waves on the EKG, marked ST-segment and/or T wave abnormalities of myocardial ischemia without symptoms, clear regional wall motion abnormalities of the left ventricle, or reduced ejection fraction below 50%, should be assessed with EKG STRESS TEST alone, with stress imaging (MPI or echo) reserved only for those unable to exercise OR with an uninterpretable EKG. (Patients with ejection fraction < 50%, with contraindication to invasive coronary arteriography, are reasonable candidates for stress imaging (MPI or echo).

- REPEAT EKG STRESS TEST ALONE OF ASYMPTOMATIC HIGH GLOBAL RISK patients (as described in the 2 bullets immediately above), whose last invasive or non-invasive test was over two years ago and was negative for hemodynamically significant obstructive coronary artery disease (i.e. no ischemia on stress testing, no Fractional Flow Reserve (FFR) <= 0.80 for a major vessel, or no angiographic stenosis >70% for a major vessel), is reasonable.

- HIGH OCCUPATIONAL RISK patients (e.g. associated with public safety, airline and boat pilots, bus and train drivers, bridge and tunnel workers/toll collectors, police officers, and firefighters) or HIGH PERSONAL RISK patients (e.g. scuba divers, etc.), should be assessed with EKG STRESS TEST alone. with stress imaging (MPI or echo) reserved only for those unable to exercise OR with an uninterpretable EKG. Determinations for screening of asymptomatic patients (without known
coronary artery disease) in high-risk occupations should be deferred to those agencies that manage such non-medical necessity.

II. INCOMPLETELY EVALUATED CAD:
Requires further evaluation within 2 years of a prior coronary evaluation for CLARIFICATION OF DIAGNOSIS OR DISEASE SEVERITY

- **NORMAL EXERCISE STRESS TEST EKG within the past 2 years and currently compelling coronary history or symptoms** should be considered appropriate indication for a repeat stress test with imaging (MPI or echocardiogram), particularly if there are reasons to avoid cardiac catheterization (CKD, dye allergy, etc.), unless invasive coronary arteriography is strongly indicated (e.g. compelling presentation of moderate or high risk unstable angina).

- **ABNORMAL OR INDETERMINATE EXERCISE STRESS EKG or CCTA (coronary computed tomographic angiography) within the past 2 years**, for whom a noninvasive approach is preferable to proceeding to invasive coronary arteriography (unclear nature of symptoms, mildly abnormal or borderline EKG stress test or CCTA, CKD, dye allergy, etc.), **is an appropriate indication for stress imaging (MPI or echo)**.

- **A WELL DOCUMENTED MYOCARDIAL INFARCTION OR moderate to high risk ACUTE CORONARY SYNDROME WITHIN THE PAST 2 YEARS, when stable, without subsequent stress imaging of invasive coronary arteriography**, can be appropriate for stress imaging, especially when a non-invasive approach is documented to be preferable to invasive coronary arteriography.

- **SEVERITY/EXTENT OF ISCHEMIA ASSESSMENT, in order to assist with the management strategy, in patients with recent invasive coronary arteriography AND suspected residual ischemia post incomplete coronary revascularization**, is an appropriate indication for stress imaging (MPI or echo), if it will affect management.

III. FOLLOW-UP of KNOWN ISCHEMIC CAD:

A. In need of FOLLOW-UP TESTING for known ischemic coronary artery disease, either ASYMPTOMATIC OR WITH STABLE symptoms

ROUTINE FOLLOW-UP when last invasive or non-invasive assessment of coronary artery disease showed HEMODYNAMICALLY SIGNIFICANT CAD (ischemia on stress test or FFR <= 0.80 for a major vessel or stenosis >=70% of a major vessel) over two years ago, without supervening coronary revascularization, is an appropriate indication for stress imaging (MPI or echo) in patients with high risk clinical scenarios, such as left ventricular dysfunction (ejection fraction less than 50%) or severe un-revascularized multivessel CAD (if it will alter management), OR in patients with HIGH RISK OCCUPATIONS (e.g. associated with public safety, airline and boat pilots, bus and train drivers, bridge and tunnel workers/toll collectors, police officers, and firefighters) or a HIGH PERSONAL RISK (e.g. scuba divers, etc.).

- **SEVERITY/EXTENT OF ISCHEMIA ASSESSMENT, in order to assist with the management strategy, in patients with recent invasive coronary arteriography AND suspected residual ischemia post incomplete coronary revascularization, is an appropriate indication for stress imaging (MPI or echo), if it will affect management.**
• MYOCARDIAL VIABILITY TESTING BY REST MYOCARDIAL PERFUSION IMAGING prior to coronary revascularization is reasonable in patients with ejection fraction less than or equal to 50%, if it could significantly alter the revascularization strategy.

B. NEW, RECURRENT, OR WORSENING (PROGRESSIVE) SYMPTOMS in patients with known ischemic CAD (ischemia on stress testing, lesion stenosis >=70%, or FFR <=0.80), which has not been revascularized.

• PRIOR LOW RISK CORONARY EVALUATION AT LEAST TWO YEARS EARLIER (e.g. limited extent of CORONARY ARTERY DISEASE, <5% myocardium at risk), AND NOW WITH NEW STABLE (or low risk unstable), RECURRENT, OR SLOWLY WORSENING (PROGRESSIVE) SYMPTOMS of coronary ischemia, is an appropriate indication for stress imaging (MPI or echo) in this patient group. However, regardless of timing of prior non-invasive assessment, clinical documentation of continued problematic symptoms or moderate to highly likely acute coronary syndrome (Table 6) of even low mortality risk (Table 7) is often better assessed with invasive coronary arteriography, particularly when stress testing in the last 2 years and current clinical findings are at odds. This category is very documentation-sensitive and requires judgment.

• INVASIVE CORONARY ARTERIOGRAPHY IS GENERALLY PREFERABLE in those patients, who have a PRIOR MODERATE OR HIGH RISK STRESS TEST RESULT (especially if NOT previously evaluated by invasive coronary arteriography) or a current diagnosis of moderate to high risk UNSTABLE ANGINA, and inappropriate for repeat stress imaging (MPI or echo), unless supervening reasons to prefer a non-invasive approach are documented in the record (e.g. very unclear symptoms, CKD, dye allergy, etc.), and it could alter management.

C. FOLLOW-UP OF PATIENTS POST CORONARY REVASCULARIZATION

• ASYMPTOMATIC, ROUTINE FOLLOW-UP, STRESS IMAGING (MPI OR ECHO) at a minimum of 2 YEARS post coronary artery bypass grafting or 2 YEARS post percutaneous coronary intervention (whichever was the latter) is appropriate only for patients with high direct CORONARY-related risk, such as incomplete coronary revascularization with feasible additional revascularization of residual severe multivessel disease, need for otherwise un evaluated follow up of stenting of unprotected left main coronary artery (LM) disease or left ventricular dysfunction (ejection fraction less than 50%), OR for patients with HIGH OCCUPATIONAL RISK (e.g. associated with public safety, airline and boat pilots, bus and train drivers, bridge and tunnel workers/toll collectors, police officers, and firefighters) or HIGH PERSONAL RISK (e.g. scuba divers, etc.).

• NEW, RECURRENT, OR WORSENING SYMPTOMS POST CORONARY REVASCULARIZATION, with good documentation, are an indication for stress imaging (MPI or echo) if it could affect management.

IV. CAD IN PRESENCE OF OTHER NEW CARDIAC CONCERNS

• NON-CORONARY CARDIAC DIAGNOSES support use of stress imaging (MPI or echo) in newly diagnosed systolic or diastolic heart failure, sustained VT (> 100 bpm), VF, exercise induced VT or nonsustained VT, frequent PVCs (over 30 per hour), and/or required initiation of antiarrhythmic drug (AAD) therapy when invasive coronary arteriography is not necessarily indicated.
• **NEW ONSET ATRIAL FIBRILLATION**, in patients with coronary artery disease and/or moderate or high global risk, are candidates for stress imaging if there has been no coronary evaluation by stress imaging or invasive coronary arteriography within the preceding two years.

• **SYNCOPE** (specifically, transient loss of consciousness due to global cerebral hypoperfusion characterized by rapid onset, short duration and spontaneous complete recovery, not just any light headedness or dizziness alone) with otherwise intermediate or high global risk of coronary artery disease warrants stress imaging (MPI or echo). Documentation supporting classic vasovagal syncope does not warrant stress testing.

• **LEFT BUNDLE BRANCH BLOCK**, when the history, physical examination, and/or noninvasive ejection fraction together support further evaluation, and invasive coronary arteriography is not already indicated, is an indication for stress imaging (MPI or echo).

• **EKG STRESS TESTING** without imaging is reasonable for EVALUATION OF EXERCISE-INDUCED ARRHYTHMIA (or long QT interval evaluation when the resting QTc is normal), when coronary artery disease is not suspected.

• **EXERCISE HEMODYNAMICS** can be obtained with Stress echocardiography with Doppler when it will affect management.

• **KAWASAKI DISEASE** long-term surveillance is better performed with CCTA, which includes aneurysm assessment.

V. **Prior to NONCARDIAC SURGERY**

• **THORACOABDOMINAL AORTIC VASCULAR SURGERY** is an indication for PREOPERATIVE STRESS IMAGING (MPI or echo) if the patient has less than a 4 MET (see Additional Information section) exercise functionality, AND that patient has at least one OPERATIVE clinical risk factor from the list: ischemic coronary artery disease (by study more than two years ago with lesions, which are: >=70% or ischemia producing on prior stress testing or with FFR <=0.80), cerebrovascular disease, insulin-requiring diabetes mellitus, history of congestive heart failure or ejection fraction less than 40%, or CKD with creatinine >= 2 mg/dl. (Such stress imaging is restricted to patients who have not had either stress imaging or invasive coronary arteriography within the past year.) If invasive coronary arteriography is preferable, then preoperative stress imaging is not appropriate.

• **UNRELATED TO THE PLANNED SURGICAL PROCEDURE**, stress imaging might be indicated for other reasons at the time patients are seen for preoperative cardiac risk evaluation. When such indications for stress imaging are unrelated to the need for the intended non-cardiac surgery, then the record must document those reasons in order to support proceeding with appropriate stress imaging (MPI or echo).

• **BARIATRIC SURGERY** is not considered an indication for preoperative stress testing.

• **SOLID ORGAN TRANSPLANTATION** is an indication for preoperative stress imaging (MPI or echo) if invasive coronary arteriography is not intended as the initial preoperative evaluation of choice, AND there has not been an adequate coronary evaluation within the past year.
VI. Prior to CARDIAC REHABILITATION or EXERCISE PROGRAM

- CARDIAC REHABILITATION ENTRY or DETERMINATION OF EXERCISE CAPACITY is an indication for stress testing with EKG alone, when performed as part of the cardiac rehabilitation program or for purposes of exercise prescription.

VII. Post CARDIAC TRANSPLANTATION

- During the first five years post cardiac transplantation, patients with glomerular filtration rates less than 40 mL/min/1.73 sq M, or who otherwise should not undergo invasive coronary arteriography every 1-2 years, are appropriate for stress imaging (MPI or echo) every 1-2 years.

- After the first five years post cardiac transplantation, in lieu of invasive coronary arteriography:
 1) patients considered at low risk for transplant vasculopathy (i.e., with normal invasive coronary arteriography) can have annual stress imaging (MPI or echo), and
 2) patients with transplant coronary vasculopathy can have annual stress imaging (MPI or echo), if the risk of annual invasive coronary arteriography is not acceptable (i.e., high risk of contrast nephropathy).

ADDITIONAL INFORMATION:

Definitions of Coronary Artery Disease:

1. Percentage stenosis refers to diameter stenosis when angiography is the method and refers to cross sectional narrowing when IVUS (intravascular ultrasound) is the method of determination.

2. Coronary artery calcification is a marker of risk, as measured by Agatston score on coronary artery calcium imaging. It is not a diagnostic tool so much as it is a risk stratification tool (similar to an ankle brachia index, family history of coronary artery disease, or high sensitivity C-reactive protein). Its incorporation into Global Risk can be achieved by using the MESA risk calculator.

3. Stenoses less than 50% are considered nonobstructive coronary artery disease, while stenoses of 50% or more are considered obstructive coronary artery disease. However, the contents of this Guideline are very clear about specifying that ischemic heart disease requires one of three possible determinants:
 i. Percentage stenosis of at least 70% by angiography or IVUS (intravascular ultrasound), as described above, for a major vessel
 ii. FFR (fractional flow reserve) of 0.80 or less for a major vessel
 iii. Demonstrable ischemic findings on stress testing (acceptable EKG or imaging), that are at least mild in degree

4. A major vessel would be a coronary vessel that would typically be substantial enough for revascularization, if it were indicated. Lesser forms of coronary artery disease would be labeled as “limited.” (i.e. A 50% lesion in a tiny septal would be limited obstructive coronary artery disease.)

5. Microvascular ischemic coronary artery disease, as might be described by a normal FFR (fractional flow reserve) above 0.80 with a reduced CFR (coronary flow reserve less than 2.5), has not otherwise been addressed in this manuscript, because it is very rarely an issue in compliance determinations. However, it would constitute a form of ischemic heart disease.

6. FFR (fractional flow reserve) is the distal to proximal pressure ratio across a coronary lesion during maximal hyperemia induced by either intravenous or intracoronary adenosine. Less than or equal to 0.80 is considered a reduction in coronary flow.

Definition of Peripheral Arterial Disease/Cerebrovascular Disease:
Non-coronary arterial narrowing causing symptoms (claudication, related tissue demise, threatened limb loss), asymptomatic 70% or more narrowing by non-invasive or invasive evaluation, atherosclerotic arterial aneurysm by non-invasive or invasive evaluation, or aortic atheroma of at least 4 mm thickness. As a subset of peripheral arterial disease, cerebrovascular disease is also defined as a history of stroke or TIA.

What is a valid anginal equivalent?

Development of an anginal equivalent (e.g. shortness of breath, fatigue, or weakness) either with or without prior coronary revascularization should be based upon the documentation of reasons to suspect that symptoms other than chest discomfort are not due to other organ systems (e.g. dyspnea due to lung disease, fatigue due to anemia, etc.), by presentation of clinical data such as respiratory rate, oximetry, lung exam, etc. (as well as d-dimer, chest CTA, and/or PFTs, when appropriate), and then incorporated into the evaluation of coronary artery disease as would chest discomfort. Syncope by itself is generally not considered an anginal equivalent, and is handled under a separate category in this guideline.

Pretest Probability of CAD for Symptomatic Patients:

Pretest probability is a reference to symptoms that need evaluation as potentially coronary in origin.

- **Typical Angina (Definite):** Defined as 1) substernal chest pain or discomfort that is 2) provoked by exertion or emotional stress and 3) relieved by rest and/or nitroglycerin.
- **Atypical Angina (Probable):** Chest pain or discomfort that lacks 1 of the characteristics of definite or typical angina.
- **Nonanginal Chest Pain:** Chest pain or discomfort that meets 1 or none of the typical angina characteristics.

Once the presence of symptoms (Typical Angina/Atypical Angina/Non angina chest pain/Asymptomatic) is determined, the probabilities of CAD can be calculated from the risk algorithms as follows:

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Gender</th>
<th>Typical/Definite Angina Pectoris</th>
<th>Atypical/Probable Angina Pectoris</th>
<th>Nonanginal Chest Pain</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td><39</td>
<td>Men</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>40–49</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>50–59</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>>60</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
</tbody>
</table>

- **Very low:** Less than 5% pretest probability of CAD
- **Low:** Less than 10% pretest probability of CAD
- **Intermediate:** Between 10% and 90% pretest probability of CAD
- **High:** Greater than 90% pretest probability of CAD

Global Risk of CAD or Vascular Disease

Global risk of CAD is defined as the probability of developing CAD, including myocardial infarction or CAD death over a given time period and refers to asymptomatic patients without known coronary artery
disease. It should be determined by the Framingham Risk Score (ATP IV risk tool), the Reynolds Risk Index, or the Pooled Cohort Equation (which includes cerebrovascular risk). A high risk is considered greater than a 20% risk of a coronary or major vascular event over the ensuing 10 years.

- **CAD Risk—Low**
 Defined by the age-specific risk level that is below average. In general, low risk will correlate with a 10-year absolute CAD risk less than 10%.

- **CAD Risk—Moderate**
 Defined by the age-specific risk level that is average or above average. In general, moderate risk will correlate with a 10-year absolute CAD risk between 10% and 20%.

- **CAD Risk—High**
 Defined as the presence of peripheral arterial disease, cerebrovascular disease, or a 10-year absolute CAD risk of greater than 20%.

Duke Treadmill Score

The equation for calculating the Duke treadmill score (DTS) is,

\[DTS = \text{exercise time in minutes} \cdot (6 \times \text{ST deviation in mm or 0.1 mV increments}) \cdot (4 \times \text{exercise angina score}) \]

with angina score being 0 = none, 1 = non limiting, and 2 = exercise-limiting.

The score typically ranges from -25 to +15. These values correspond to low risk (with a score of \(\geq +5\)), intermediate risk (with scores ranging from -10 to +4), and high risk (with a score of \(<-11\)) categories.

What Type of Stress Test is Appropriate?

EKG Stress Test versus Stress Echocardiography versus Stress Myocardial Perfusion Imaging

Appropriate resource utilization, cost effectiveness, and radiation exposure limitation dictate choices in stress testing options.

Five prominent scenarios for an EKG stress test WITHOUT imaging (i.e. exercise treadmill EKG test) are endorsed by the guidelines presented above, often (but not always) requiring that the patient can exercise for at least 3 minutes of Bruce protocol with achievement of near maximal heart rate AND has an interpretable EKG for ischemia during exercise:

- The (symptomatic) low pretest probability patient who is able to exercise and has an interpretable EKG
- The (asymptomatic) high global risk patient who is able to exercise and has an interpretable EKG
- The patient who is under evaluation for exercise induced arrhythmia (or long QT interval evaluation when the resting QTc is normal), and coronary artery disease is not suspected
- The patient who requires an entrance stress test EKG for a cardiac rehab program or for an exercise prescription

An uninterpretable baseline EKG includes:

- Abnormalities of ST segment depression of 0.1 mV (1 mm with conventional calibration) or more
- Ischemic looking T wave inversions of at least 0.25 mV (2.5 mm with conventional calibration)
- EKG findings of probable or definite LVH, WPW, a ventricular paced rhythm, or left bundle branch block
- Digitalis use or hypokalemia
- Resting HR under 50 bpm on a beta blocker and an anticipated suboptimal workload (e.g. rate-pressure product less than 20-25K)
Prior false positive stress EKG

Exercise remains a valid stressor:

- In patients who can exercise to near maximal heart rate
- For entrance to cardiac rehabilitation or determination of an exercise prescription
- For exercise induced arrhythmia evaluation
- Even with an uninterpretable EKG if stress imaging is appropriate and EKG un-interpretablility is acknowledged

Scenarios for choosing stress echocardiography over myocardial perfusion imaging:

The patient can exercise to near maximal heart rate for at least 3 minutes of Bruce protocol and has an interpretable echocardiogram, with usage of contrast medium if necessary to enable quality imaging

AND

There is normal baseline systolic function, without moderately severe or severe valvular disease. Stress echocardiography with Doppler is appropriate in the patient for whom determination of exercise hemodynamics is required.

Exercise Doppler with hemodynamics is the main reason for stress testing.

When is Myocardial Perfusion Imaging Preferred Over Stress Echocardiography?

There are circumstances in which myocardial perfusion imaging is generally preferable to stress echocardiography:

- BMI >/= 40
- Ventricular paced rhythm, LBBB, WPW
- Frequent PVCs interfering with wall motion assessment
- Prior coronary artery bypass grafting with resultant paradoxical septal motion
- Currently in poorly controlled atrial fibrillation
- Poor cardiac window on echo (documented on echo report as technically limited or difficult, without likely benefit of contrast medium)
- Documented regional wall motion abnormality: dyskinesia, akinesia, or hypokinesia
- Unable to perform ADL's with documented extent of limitations
- Functional capacity <4 METS or < 3' Bruce protocol
- Arthritis with documented limitations
- Leg/foot amputation
- Active foot wound/ulcer
- Ambulation requires cane or walker
- Confinement to a wheelchair
- Severe chronic obstructive pulmonary disease (based upon PFT findings), severe dyspnea on exertion, or requirement for home oxygen use
- Systolic congestive heart failure with ejection fraction <40%
- Recent orthopedic surgery limiting use of a lower extremity
Determinants of a 4 MET functional capacity:
Examples of activities:

<4 METs: Slow ballroom dancing, golfing with a cart, playing a musical instrument, and walking at approximately 2 mph to 3 mph

>4 METs: Climbing a flight of stairs or walking up a hill, walking on level ground at 4 mph, and performing heavy work around the house

Tools for Characterization of Unstable Angina:

Risk Stratification in Acute Coronary Syndrome from 2007 ACC/AHA Guidelines

Three Principal Presentations of Unstable Angina (as defined within a two week time frame) (Braunwald)

<table>
<thead>
<tr>
<th>Class</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest angina</td>
<td>Angina occurring at rest and prolonged, usually greater than 20 min</td>
</tr>
<tr>
<td>New-onset angina</td>
<td>New-onset angina of at least CCS class III severity</td>
</tr>
<tr>
<td>Increasing angina</td>
<td>Previously diagnosed angina that has become distinctly more frequent, longer in duration, or occurs in threshold (i.e., increased by 1 or more CCS class to at least CCS class III severity)</td>
</tr>
</tbody>
</table>

Table 6: Likelihood that Symptoms Represent an Acute Coronary Syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>High Likelihood Any of the following:</th>
<th>Intermediate Likelihood Absence of high/lifetime feature and presence of any of the following:</th>
<th>Low Likelihood Absence of high or intermediate likelihood feature but may have:</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Chest or left arm pain or discomfort as chief symptom reproducing prior documented angina</td>
<td>Chest or left arm pain or discomfort as chief symptom Age greater than 70 years Mortality Diabetes mellitus</td>
<td>Probable ischemic symptoms in absence of any of the intermediate likelihood characteristics Renin-angiotensin system</td>
</tr>
<tr>
<td>History</td>
<td>Known history of CAD, including MI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Transient RR run, palpitation, dizziness, pulmonary edema, or syncope</td>
<td>Extracardiac vascular disease</td>
<td>Chest discomfort reproduced by palpation</td>
</tr>
<tr>
<td>Electrocardiogram (ECG)</td>
<td>New, or presumably new, transient ST-segment depression (1 mm or greater) or Twave inversion in multiple precordial leads</td>
<td>Final Q waves ST depression 0.5 to 1 mm or T-wave inversion greater than 3 mm</td>
<td>T-wave flattening or inversion less than 1 mm in leads with dominant R waves Normal ECG Normal</td>
</tr>
<tr>
<td>Cardiac markers</td>
<td>Elevated cardiac Tn, Tn-T, or CK-MB</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Table 7: Short Term Risk of Death or Nonfatal MI in Acute Coronary Syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>At least 1 of the following features must be present:</th>
<th>No high-risk feature, but must have 1 of the following:</th>
<th>No high or intermediate-risk feature but may have any of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Accelerating tempo of ischemic symptoms is occurring ≥ 48 h</td>
<td>Prior MI, peripheral or cerebrovascular disease, or CAD; prior revascularization</td>
<td>Increased angina frequency, severity, or duration</td>
</tr>
<tr>
<td>Character of pain</td>
<td>Persistent angina (greater than 20 min) or new onset</td>
<td>Persistent angina (greater than 20 min) or new onset, now relieved, with moderate or high likelihood of CAD; rest angina (greater than 20 min) or relieved with rest or sublingual NTG; Metastatic malignancy</td>
<td>Angina provoked at a lower threshold; now onset angina with onset ≥ 2 weeks to 2 months prior presentation</td>
</tr>
<tr>
<td>Clinical findings</td>
<td>Pulmonary edema, most likely due to ischemia; New or worsening MI; Srv, new or worsening renal failure; Hypertension, intractable, tachycardia</td>
<td>Age greater than 70 years</td>
<td>Normal or unchanged EKG</td>
</tr>
<tr>
<td>ECG</td>
<td>Angina at rest with transient ST-segment depression, changes greater than 0.5 mm</td>
<td>T-wave changes; Pathological Q waves or resting ST-depression less than 1 mm in multiple lead groups (antero, inferior, lateral)</td>
<td>Normal or unchanged EKG</td>
</tr>
<tr>
<td>Cardiac markers</td>
<td>Elevated cardiac troponin I, T, or CRP (e.g., TnT or TnI greater than 0.1 ng per ml)</td>
<td>Slightly elevated cardiac troponin I, T, or CRP (e.g., TnT greater than 0.03, but less than 0.1 ng per ml)</td>
<td>Normal</td>
</tr>
</tbody>
</table>

The **TIMI Risk Score** is determined by the sum of the presence of 7 variables at admission: 1 point is given for each of the following variables: age ≥65 years, at least 3 risk factors for CAD, prior coronary stenosis of ≥50%, ST-segment deviation on ECG presentation, at least 2 anginal events in prior 24 hours, use of aspirin in prior 7 days, and elevated serum cardiac biomarkers

Low-Risk TIMI Score: TIMI score <2; **High-Risk TIMI Score:** TIMI score ≥2. A low risk TIMI score might still warrant invasive coronary arteriography, when other features, such as symptoms, are compelling.

Abbreviations:

AAD antiarrhythmic drug
ADLs activities of daily living
CAD coronary artery disease
CCS Canadian Cardiovascular Society
CKD chronic kidney disease
EKG electrocardiogram
FFR fractional flow reserve
LBBB left bundle-branch block
LVH left ventricular hypertrophy
MI myocardial infarction
MET estimated metabolic equivalent of exercise
PFT pulmonary function test
PVCs premature ventricular contractions
TIMI Thrombolysis in Myocardial Infarction (Study Group)
REFERENCES

General References

References for cardiovascular risk:
(Also see links to Online Calculators at end of Reference Section)

NIH Estimate of 10 Year coronary artery disease risk from Framingham Risk Score:

References for High Occupational Risk

Reference for peri-operative risk

Reference for unstable angina risk

Reference for indications for cardiac catheterization/ invasive coronary arteriography:
Reference for bariatric surgery risk

Reference for number of PVCs

Reference for syncope

Reference for left bundle branch block

Reference for right bundle branch block

Referenced for police, fireman, pilots, etc.

Referenced for Arrhythmias and Long QT Syndrome

Reference for Cardiac Transplantation Patients

Reference for Microvascular Coronary Disease

Reference for Kawasaki Disease

Reference for Anti-rejection Medication and Vascular Disease

Links to Cardiac/Vascular Risk Online Calculators:

Framingham-ATP IV: http://cvdrisk.nhlbi.nih.gov/

Reynolds Risk Score: http://www.reynoldsriskscore.org/

Pooled Cohort Equation (includes cardiac and cerebrovascular risk): http://clincale.com/Cardiology/ASCVD/PooledCohort.aspx?example
ACC/AHA Risk Calculator (includes cardiac and cerebrovascular risk):
http://tools.acc.org/ASCVD-Risk-Estimator/

MESA Risk Calculator with addition of Coronary Artery Calcium Score:
https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx
INTRODUCTION:
Cardiac positron emission tomography (PET) scanning is used in 2 key clinical situations: (1) myocardial perfusion scanning as a technique to identify perfusion defects, which in turn reflect coronary artery disease (CAD); and (2) assessment of myocardial viability in patients with left ventricular (LV) dysfunction as a technique to determine candidacy for a revascularization procedure. Cardiac PET is also being studied in the measurement of myocardial blood flow and blood flow reserve and for evaluation of coronary artery inflammation.

INDICATIONS FOR HEART (CARDIAC) PET SCAN:

Myocardial Perfusion
- Cardiac positron emission tomography (PET) scanning may be considered medically necessary to assess myocardial perfusion and thus diagnose coronary artery disease in either of the following conditions:
 - In patients with indeterminate single photon emission computed tomography (SPECT) scan
 - In patients for whom SPECT could be reasonably expected to be suboptimal in quality on the basis of body habitus. (See Policy Guidelines)

Myocardial Viability
- Cardiac PET scanning may be considered medically necessary to assess myocardial viability in patients with severe left ventricular dysfunction as a technique to determine candidacy for a revascularization procedure.

Cardiac Sarcoidosis
- Cardiac PET scanning may be considered medically necessary for diagnosing cardiac sarcoidosis in patients who are unable to undergo magnetic resonance imaging (MRI) scanning. Examples of patients who are unable to undergo MRI include, but are not limited to, patients with pacemakers, automatic implanted cardioverter-defibrillators (AICDs), or other metal implants.

Myocardial Perfusion Imaging
For myocardial perfusion studies, patient selection criteria for PET scans include individual assessment of the pretest probability of coronary artery disease (CAD), based both on patient symptoms and risk factors. Patients at low risk for CAD may be adequately evaluated with exercise electrocardiography. Patients at high risk for CAD typically will not benefit from noninvasive assessment of myocardial perfusion; a negative test will not alter disease probability sufficiently to avoid invasive angiography. Accordingly, myocardial perfusion imaging is potentially beneficial for patients at intermediate risk of CAD (25%-75% disease prevalence).* This risk can be estimated using the patient’s age, sex, and chest pain quality. For example, Table 1 summarizes a characterization of patient populations at intermediate risk for CAD. (3)
Intermediate risk ranges used by different authors may differ from the range used here. These pretest probability risk groups are based on a 1995 TEC Assessment (4) and take into account spectrum effect. American College of Cardiology (ACC) guidelines define low risk as less than 10%, intermediate risk as 10% to 90%, and high risk as greater than 90%.

<table>
<thead>
<tr>
<th>Table 1. Individuals at Intermediate Risk for CAD According to Chest Pain Quality Typical Angina*</th>
<th>Atypical Anginab</th>
<th>Nonanginal Chest Painc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men ages 30-39 y</td>
<td>Men ages 30-70 y</td>
<td>Men ages ≥50 y</td>
</tr>
<tr>
<td>Women ages 30-60 y</td>
<td>Women ages ≥50 y</td>
<td>Women ages ≥60 y</td>
</tr>
</tbody>
</table>

* Chest pain with all of the following characteristics: (1) substernal chest discomfort with characteristic quality and duration, (2) provoked by exertion or emotional stress, and (3) relieved by rest or nitroglycerin.

b Chest pain that lacks 1 of the characteristics of typical angina.

c Chest pain that has 1 or none of the typical angina characteristics.

SPECT scanning can be limited by body habitus, particularly by moderate to severe obesity, (body mass index (BMI) > 35 kilograms/square meter (kg/m²)), large breasts, breast implants, previous mastectomy, chest wall deformity, or pleural/pericardial effusion which can cause attenuation of tissue tracer leading to inaccurate images. In patients for whom body habitus is expected to lead to suboptimal SPECT scans, PET scanning is preferred.

Myocardial Viability
Patients selected to undergo PET scans for myocardial viability are typically those with severe left ventricular dysfunction who are being considered for revascularization. A PET scan may determine whether the left ventricular dysfunction is related to viable or nonviable myocardium. Patients with viable myocardium may benefit from revascularization, but those with nonviable myocardium will not. As an example, PET scans are commonly performed in potential heart transplant candidates to rule out the presence of viable myocardium.

For both of the above indications, a variety of studies have suggested that PET scans are only marginally more sensitive or specific than SPECT scans. Therefore, the choice between a PET scan (which may not be available locally) and a SPECT scan represents another clinical issue. PET scans may provide the greatest advantage over SPECT scans in moderately to severely obese patients for whom tissue attenuation of tracer is of greater concern.

General
PET scans are considered most appropriate in patients with an intermediate risk of coronary artery disease, typically defined as a 25% to 75% probability of having CAD. Clinically, this group of patients typically includes those with chest pain but without a history of myocardial infarction or stroke. Patients at either low or high risk of CAD may not require a myocardial perfusion study at all.
CPT Codes: 78472, 78473, 78494, +78496

INTRODUCTION:

Multiple-gated acquisition (MUGA) scanning is a radionuclide ventriculography technique to evaluate the pumping function of the ventricles of the heart. During this noninvasive nuclear test, radioactive tracer is injected into a vein and a gamma camera detects the radiation released by the tracer, providing moving images of the heart. From these images, the health of the heart's pumping chamber, the left ventricle, can be assessed. It is used to evaluate the left ventricular ejection fraction (LVEF), a measure of overall cardiac function. It may also detect areas of poor contractility following an ischemic episode and it is used to evaluate left ventricular hypertrophy.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR MULTIPLE-GATED ACQUISITION (MUGA) SCAN:

- To evaluate left ventricular (LV) function at baseline before chemotherapy or cardiotoxic therapy; may be repeated prior to subsequent chemotherapy cycles until a total cardiotoxic dose has been reached.
- To evaluate ejection fraction in a patient with congestive heart failure (CHF), when prior cardiac imaging has proven inadequate for an accurate determination of ejection fraction.
- To evaluate patient, who is obese or who has chronic obstructive pulmonary disease (COPD), for coronary artery disease (CAD).
- As an alternative form of stress imaging instead of echocardiography or myocardial perfusion imaging, based upon similar necessity criteria for the evaluation of coronary or valvular heart disease.

COMBINATION OF STUDIES WITH MUGA:

Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

ADDITIONAL INFORMATION RELATED TO MUGA:

Request for a follow-up study - A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

MUGA Scan Monitoring during Chemotherapy – Chemotherapeutic drugs that are used in cancer treatment may be toxic to the heart muscle. To minimize the risk of damaging the heart muscle with these drugs, the patient’s cardiac function may be monitored with the MUGA scan before and during administration of the drug. Before the first dose of the drug, a MUGA scan may be performed to establish a baseline left ventricle ejection fraction (LVEF). It may then be repeated after cumulative doses. If the LVEF begins to decrease, cardio toxicity risk must be considered if continuing the treatment.
REFERENCES

of renal function on cardiac death, *Circulation*, 118, 2540-2549. Retrieved from
http://circ.ahajournals.org/content/118/24/2540.abstract

http://www.jvascsurg.org/article/S0741-5214(02)23579-X/abstract

http://content.onlinejacc.org/cgi/reprint/49/2/227.pdf

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495989/

Blue Shield CA Medical Policy: 6.01.06

CPT Codes: 78608, 78609

“FOR BLUE SHIELD CA MEMBERS ONLY”

INDICATIONS FOR BRAIN PET SCAN (CNS Applications):

Brain Seizures:

Positron emission tomography (PET) using 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) may be considered medically necessary in either of the following conditions:

- Assessment of patient with epileptic seizures who are candidates for surgery.

The use of PET for all other miscellaneous indications is considered investigational, including, but not limited to:

Central Nervous System Diseases

- Autoimmune disorders with central nervous system (CNS) manifestations, including:
 - Behçet syndrome
 - Lupus erythematosus

- Cerebrovascular diseases, including:
 - Arterial occlusive disease (arteriosclerosis, atherosclerosis)
 - Carotid artery disease
 - Cerebral aneurysm
 - Cerebrovascular malformations (AVM and Moya-Moya disease)
 - Hemorrhage
 - Infarct
 - Ischemia

- Degenerative motor neuron diseases, including:
 - Amyotrophic lateral sclerosis
 - Friedreich ataxia
 - Olivopontocerebellar atrophy
 - Parkinson disease
 - Progressive supranuclear palsy
 - Shy-Drager syndrome
 - Spino cerebellar degeneration
 - Steele-Richardson-Olszewski disease
 - Tourette syndrome

- Dementias, including:
 - Alzheimer disease
 - Multi-infarct dementia
 - Pick disease
 - Frontotemporal dementia
 - Dementia with Lewy bodies
• Presenile dementia

• Demyelinating diseases, such as multiple sclerosis
 • Developmental, congenital, or inherited disorders, including:
 o Adrenoleukodystrophy
 o Down syndrome
 o Huntington’s chorea
 o Kinky-hair disease (Menkes disease)
 o Sturge-Weber syndrome (encephalofacial angiomatosis) and the phakomatoses

• Miscellaneous
 o Chronic fatigue syndrome
 o Sick building syndrome
 o Posttraumatic stress disorder

• Nutritional or metabolic diseases and disorders, including:
 o Acanthocytes
 o Hepatic encephalopathy
 o Hepatolenticular degeneration
 o Metachromatic leukodystrophy
 o Mitochondrial disease
 o Subacute necrotizing encephalomyelopathy

• Psychiatric diseases and disorders, including:
 o Affective disorders
 o Depression
 o Obsessive-compulsive disorder
 o Psychomotor disorders
 o Schizophrenia

• Pyogenic infections, including:
 o Aspergillosis
 o Encephalitis

• Substance abuse, including the CNS effects of alcohol, cocaine, and heroin

• Trauma, including brain injury and carbon monoxide poisoning

• Viral infections, including:
 o Acquired immune deficiency syndrome (AIDS)
 o AIDS dementia complex
 o Creutzfeldt-Jakob syndrome
 o Progressive multifocal leukoencephalopathy
 o Progressive rubella encephalopathy
 o Subacute sclerosing panencephalitis

• Mycobacterium infection
• Migraine
• Anorexia nervosa
• Cerebral blood flow in newborns
• Vegetative versus “locked-in” state
Pulmonary Diseases
- Adult respiratory distress syndrome
- Diffuse panbronchiolitis
- Emphysema
- Obstructive lung disease
- Pneumonia

Musculoskeletal Diseases
- Spondylodiscitis
- Joint replacement follow-up

Other
- Giant cell arteritis
- Vasculitis
- Inflammatory bowel disease
- Sarcoidosis

Policy Guidelines
In patients with epileptic seizures, appropriate candidates are patients with complex partial seizures that have failed to respond to medical therapy and who have been advised to have a resection of a suspected epileptogenic focus located in a region of the brain accessible to surgery. Conventional techniques for seizure localization must have been tried and provide data that suggested a seizure focus but were not sufficiently conclusive to permit surgery. In addition, the purpose of the PET examination should be to avoid subjecting the patient to extended preoperative electroencephalographic recording with implanted electrodes or to help localize and minimize the number of sites for implanted electrodes to reduce the morbidity of that procedure.
78813 – PET Scan

Blue Shield CA Medical Policy – 6.01.26
Blue Shield CA Medical Policy – 6.01.06

CPT Codes:
78811 - Limited area e.g. Chest, head/neck
78812 - Skull base to mid thigh
78813 - Whole Body
78814 - With CT attenuation (Limited area e.g. Chest, head/neck)
78815 - With CT attenuation (Skull base to mid thigh)
78816 - With CT attenuation (Whole Body)
G0219 - PET imaging whole body, melanoma for non-covered indications
G0235 - PET imaging, any site, not otherwise specified
G0252 - PET imaging, initial diagnosis of breast cancer and/or surgical planning for breast cancer

“FOR BLUE SHIELD CA MEMBERS ONLY”

IMPORTANT NOTE:
All policy statements apply to both positron emission tomography (PET) scans and PET/computed tomography (CT) scans (i.e., PET scans with or without PET/CT fusion).

NONCOVERED INDICATIONS:
G0219 PET imaging whole body; melanoma
G0235 PET imaging, any site
G0252 PET imaging, full and partial-ring PET for initial dx of breast cancer

INDICATIONS FOR PET SCAN:
For the clinical situations indicated that may be considered medically necessary, this is with the assumption that the results of the PET scan will influence treatment decisions. If the results will not influence treatment decisions, these situations would be considered not medically necessary.

Bone Cancer:
- PET scanning may be considered medically necessary in the staging of Ewing sarcoma and osteosarcoma.
- PET scanning is considered investigational in the staging of chondrosarcoma.

Breast Cancer:
- PET scanning may be considered medically necessary in the staging and restaging of breast cancer for the following application:
 - Detecting locoregional or distant recurrence or metastasis (except axillary lymph nodes) when suspicion of disease is high and other imaging is inconclusive
- PET scanning is considered investigational in the evaluation of breast cancer for all other applications, including but not limited to the following:
 - Differential diagnosis in patients with suspicious breast lesions or an indeterminate/low suspicion finding on mammography
 - Staging axillary lymph nodes
 - Predicting pathologic response to neoadjuvant therapy for locally advanced disease

Commented [dlb1]: A systematic review and meta-analysis addressed use of fluorine-18 fluoro-ethyl-tyrosine (FET) in detecting primary brain tumors.(22) While it used a sophisticated meta-analytic method, it did not compare use of 18F-FET PET with another imaging modality for diagnosis of brain tumors, so no conclusions can be reached about comparative effectiveness. A 2013 meta-analysis found limited utility for 18F-FDG PET in differentiating brain tumors.(37) Diagnostic performance was better with 11C-methionine PET. However, another meta-analysis found dynamic susceptibility contrast-enhanced MRI performed better than 11C-methionine PET in glioma recurrence detection.(38)
CERVICAL CANCER
• PET scanning may be considered medically necessary for either of the following:
 o The initial staging of patients with locally advanced cervical cancer
 o The evaluation of known or suspected recurrence

COLORECTAL CANCER (Includes colon, rectal and anal cancers)
• PET scanning may be considered medically necessary as a technique for either of the following:
 o Staging and restaging to detect and assess resectability of hepatic or extrahepatic metastases of colorectal cancer
 o To evaluate a rising and persistently elevated carcinoembryonic antigen (CEA) level when standard imaging, including CT scan, is negative
• PET scanning is considered investigational for either of the following:
 o A technique to assess the presence of scarring versus local bowel recurrence in patients with previously resected colorectal cancer
 o A technique contributing to radiotherapy treatment planning

ESOPHAGEAL CANCER
• PET scanning may be considered medically necessary in either of the following:
 o Staging of esophageal cancer
 o Determining response to preoperative induction therapy
• PET scanning is considered investigational in other aspects of the evaluation of esophageal cancer, including but not limited to the following applications:
 o Detection of primary esophageal cancer

GASTRIC CANCER
• PET scanning may be considered medically necessary in either of the following:
 o The initial diagnosis and staging of gastric cancer
 o Evaluation for recurrent gastric cancer following surgical resection, when other imaging modalities are inconclusive

HEAD AND NECK
• PET scanning may be considered medically necessary in any of the following:
 o The diagnosis of suspected cancer
 o Initial staging of disease
 o Restaging of residual or recurrent disease during follow up

INFECTION/INFLAMMATORY APPLICATION (Miscellaneous_Non oncologic)
• For the diagnosis of chronic osteomyelitis. (Blue Shield CA Medical Policy – 6.01.06)

LUNG CANCER
• PET scanning may be considered medically necessary for any of the following applications:
 o Patients with a solitary pulmonary nodule as a single scan technique (not dual-time) to distinguish between benign and malignant disease when prior CT scan and chest x-ray findings are inconclusive or discordant
 o As staging or restaging technique in those with known non-small-cell lung cancer
 o To determine resectability for patients with a presumed solitary metastatic lesion from lung cancer
• PET scanning may be considered medically necessary to assess for distant metastases in small cell lung cancer when limited stage disease is suspected.
• Except as noted above for suspected limited stage disease, PET scanning is considered investigational in staging of small cell lung cancer.

LYMPHOMA (Including Hodgkin’s disease)
• PET scanning may be considered medically necessary as a technique for staging lymphoma either during initial staging or for restaging at follow-up.

MELANOMA
• PET scanning may be considered medically necessary as a technique for assessing extranodal spread of malignant melanoma at initial staging or at restaging during follow-up treatment.
• PET scanning may be considered medically necessary every 4-12 months to screen high-risk patients with stage IIB-IV melanomas for recurrent or metastatic disease for up to five years from the date of diagnosis.
• PET scanning is considered investigational as a technique to detect regional lymph node metastases in patients with clinically localized melanoma who are candidates to undergo sentinel node biopsy.

NEUROENDOCRINE TUMORS
• PET scanning may be considered medically necessary in the initial evaluation of poorly differentiated (high grade) neuroendocrine tumors when initial imaging (MRI or CT) is non-diagnostic.
• PET scanning is considered investigational for subsequent imaging, including staging and restaging of neuroendocrine tumors.

OVARIAN CANCER
• PET scanning may be considered medically necessary in the evaluation of patients with signs and/or symptoms of suspected ovarian cancer recurrence (restaging) when standard imaging, including CT scan, is inconclusive.
• PET scanning is considered investigational in the initial evaluation of known or suspected ovarian cancer in all situations.

PANCREATIC CANCER
• PET scanning may be considered medically necessary in the initial diagnosis and staging of pancreatic cancer when other imaging and biopsy are inconclusive.
• PET scanning is considered investigational as a technique to evaluate other aspects of pancreatic cancer.

SOFT TISSUE SARCOMAS
• PET scanning is considered investigational in evaluation of soft tissue sarcoma, including but not limited to the following applications:
 o Distinguishing between benign lesions and malignant soft tissue sarcoma
 o Distinguishing between low grade and high grade soft tissue sarcoma
 o Detecting locoregional recurrence
 o Detecting distant metastasis
 o Evaluating response to imatinib and other treatments for gastrointestinal stromal tumors

Commented [dlb3]: Two systematic reviews, one of which also conducted a meta-analysis, addressed PET for staging of multiple myeloma. (26,32) Neither report compared the diagnostic performance of PET with other imaging modalities, so they do not support conclusions about comparative effectiveness.
TESTICULAR CANCER
• PET scanning may be considered medically necessary in evaluation of residual mass following chemotherapy of stage IIB and III seminomas. (The PET scan should be completed not sooner than 6 weeks following chemotherapy.)
• Except as noted above for seminoma, PET scanning is considered investigational in evaluation of testicular cancer, including but not limited to the following applications:
 o Initial staging of testicular cancer
 o Distinguishing between viable tumor and necrosis/fibrosis after treatment of testicular cancer
 o Detection of recurrent disease after treatment of testicular cancer

THYROID CANCER
• PET scanning may be considered medically necessary in the restaging of patients with differentiated thyroid cancer when thyroglobulin (Tg) levels are elevated and whole-body I-131 imaging is negative.
• PET scanning is considered investigational in the evaluation of known or suspected differentiated or poorly differentiated thyroid cancer in all other situations.

UNKNOWN PRIMARY
• PET scanning may be considered medically necessary in patients with an unknown primary who meet all of the following criteria:
 o In patients with a single site of disease outside the cervical lymph nodes
 o Patient is considering local or regional treatment for a single site of metastatic disease
 o After a negative workup for an occult primary tumor
 o PET scan will be used to rule out or detect additional sites of disease that would eliminate the rationale for local or regional treatment
• PET scanning is considered investigational for other indications in patients with an unknown primary, including, but not limited to the following:
 o As part of the initial workup of an unknown primary
 o As part of the workup of patients with multiple sites of disease

CANCER SURVEILLANCE
PET scanning is considered investigational when used as a surveillance tool for patients with cancer or with a history of cancer. A scan is considered surveillance if performed more than 6 months after completion of cancer therapy (12 months for lymphoma) in patients without objective signs or symptoms suggestive of cancer recurrence. (See Policy Guidelines)

OTHER ONCOLOGIC APPLICATIONS:
• Other oncologic applications of PET scanning, including but not limited to the following, are considered investigational:
 o Diagnosis and management of known or suspected prostate cancer
 o Diagnosis of brain tumors
 o Staging of multiple myeloma
 o Staging inguinal lymph nodes in patients with squamous cell carcinoma of the penis

POLICY GUIDELINES:

Patient Selection Issues
As with any imaging technique, the medical necessity of positron emission tomography (PET) scanning depends in part on what imaging techniques are used either before or after the PET scanning. Due to its
expense. PET scanning is typically considered after other techniques, such as CT, MRI, or ultrasonography, provide inconclusive or discordant results. In patients with melanoma or lymphoma, PET scanning may be considered an initial imaging technique. If so, the medical necessity of subsequent imaging during the same diagnostic evaluation is unclear. Thus, PET should be considered for the medically necessary indications above only when standard imaging, such as CT or MRI, is inconclusive or not indicated.

The patient selection criteria for PET scanning may also be complex. For example, it may be difficult to determine from claims data whether a PET scan in a patient with malignant melanoma is being done primarily to evaluate extranodal disease or the regional lymph nodes. Similarly, it may be difficult to determine whether a PET scan in a patient with colorectal cancer is being performed to detect hepatic disease or evaluate local recurrence. Due to the complicated hierarchy of imaging options in patients with malignancy and complex patient selection criteria, 1 possible implementation strategy for this policy is its use for retrospective review, possibly focusing on cases with multiple imaging tests, including PET scans. Use of PET scanning for surveillance as described in the policy statement and policy rationale refers to use of PET to detect disease in asymptomatic patients at various intervals. This is not the same as use of PET for detecting recurrent disease in symptomatic patients; these applications of PET are considered within tumor-specific categories of the policy statements.

ADDITIONAL INFORMATION RELATED TO PET SCANS:

Coding

A PET scan essentially involves 3 separate activities:

- Manufacture of the radiopharmaceutical, which may be manufactured on site or manufactured at a regional delivery center with delivery to the institution performing PET
- Actual performance of the PET scan
- Interpretation of the results.

The following CPT codes and HCPCS codes are available to code for PET scans:

CPT Codes:

- 78608: Brain imaging, positron emission tomography (PET): metabolic evaluation
- 78609: Brain imaging, positron emission tomography (PET): perfusion evaluation
- 78811: Positron emission tomography (PET) imaging: limited area (e.g., chest, head/neck)
- 78812: Positron emission tomography (PET) imaging: skull base to mid-thigh
- 78813: Positron emission tomography (PET) imaging: whole body

The following are CPT codes for concurrently acquired PET and computed tomography (CT):

- 78814: Positron emission tomography (PET) with concurrently acquired computed tomography (CT) for attenuation correction and anatomical localization imaging: limited area (e.g., chest, head/neck)
- 78815: Positron emission tomography (PET) with concurrently acquired computed tomography (CT) for attenuation correction and anatomical localization imaging: skull base to mid-thigh
- 78816: Positron emission tomography (PET) with concurrently acquired computed tomography (CT) for attenuation correction and anatomical localization imaging: whole body
When the radiopharmaceutical is provided by an outside distribution center, there may be an additional separate charge, or this charge may be passed through and included in the hospital bill. In addition, an extra transportation charge will be likely for radiopharmaceuticals that are not manufactured on site.

HCPCS Codes:
Centers for Medicare and Medicaid Services (CMS) maintained a couple of HCPCS codes for Medicare noncovered indications:
- **G0219**: PET imaging whole body; melanoma for noncovered indications
- **G0235**: PET imaging, any site not otherwise specified
- **G0252**: PET imaging, full and partial-ring PET scanners only, for initial diagnosis of breast cancer and/or surgical planning for breast cancer (e.g., initial staging of axillary lymph nodes)

CMS added 2 new modifiers to facilitate the changes in the Medicare national coverage policy for PET. The modifiers are:
- **PI**: Positron emission tomography (PET) or PET/computed tomography (CT) to inform the initial treatment strategy of tumors that are biopsy proven or strongly suspected of being cancerous based on other diagnostic testing, 1 per cancer diagnosis.
- **PS**: Positron emission tomography (PET) or PET/computed tomography (CT) to inform the subsequent treatment strategy of cancerous tumors when the beneficiary's treating physician determines that the PET study is needed to inform subsequent anti-tumor strategy

The following are **HCPCS** codes specific to a few of the radiotracers used for PET:
- **A9552**: Fluorodeoxyglucose F-18 FDG, diagnostic, per study dose, up to 45 millicuries
- **A9526**: Nitrogen N-13 AMMONIA, diagnostic, per study dose, up to 40 millicuries
- **A9580**: Sodium fluoride F-18, diagnostic, per study dose, up to 30 millicuries

Background
A variety of tracers are used for PET scanning, including oxygen-15, nitrogen-13, carbon-11, and fluorine-18. Because of their short half-life, some tracers must be made locally using an onsite cyclotron. The radiotracer most commonly used in oncology imaging has been fluorine-18 coupled with fluorodeoxyglucose (FDG), which has a metabolism related to glucose metabolism. FDG has been considered useful in cancer imaging, because tumor cells show increased metabolism of glucose. The most common malignancies studied have been melanoma, lymphoma, lung, colorectal, and pancreatic cancer.

For this policy, PET scanning is discussed for the following 4 applications in oncology:

- **Diagnosis**: This refers to use of PET as part of the testing used in establishing whether or not a patient has cancer.
- **Staging**: This refers to use of PET to determine the stage (extent) of the cancer at the time of diagnosis, before any treatment is given. Imaging at this time is generally to determine whether or not the cancer is localized. This also may be referred to as initial staging.
- **Restaging**: This refers to imaging after treatment in 2 situations. Restaging is part of the evaluation of a patient in whom a disease recurrence is suspected based on signs and/or symptoms. Restaging also includes determining the extent of malignancy after completion of a full course of treatment.
Surveillance. This refers to use of imaging in asymptomatic patients (patients without objective signs or symptoms of recurrent disease). This imaging is completed 6 months or more (12 months or more for lymphoma) after completion of treatment.

Note This policy only addresses the use of radiotracers detected with the use of dedicated PET scanners. Radiotracers such as FDG may be detected using single-photon emission computerized tomography (SPECT) cameras, a technique that may be referred to as FDG-SPECT imaging. The use of SPECT cameras for PET radiotracers presents unique issues of diagnostic performance and is not considered in this policy.

Regulatory Status

In 1997, the U.S. Food and Drug Administration (FDA) Modernization Act attempted to resolve the controversy regarding PET scans first by establishing FDA authority over the safety and effectiveness of locally manufactured radiotracers and second, by developing streamlined regulations for good manufacturing practices with which each PET facility must comply.

The FDA issued a notice in the *Federal Register* on March 10, 2000, summarizing the regulatory history of PET radiotracers and highlighting its decisions on safety and effectiveness for certain uses of certain PET radiotracers. The FDA conducted a literature review and Advisory Committee meetings to discuss the following uses:

- 18F-FDG for evaluation of glucose metabolism in oncology
- 18F-FDG for evaluation of myocardial hibernation
- 13N-ammonia for evaluation of myocardial blood flow
- 15O-water for assessment of cerebral perfusion

However, only the first 3 of these were subsequently approved by the FDA. In September 2012, the FDA approved choline C-11 for PET imaging in patients with suspected prostate cancer recurrence (i.e., elevated serum prostate-specific antigen after initial therapy) in whom bone scintigraphy, CT, or MRI is noninformative. Potential sites of prostate cancer recurrence identified on choline C-11 PET scanning require subsequent histologic confirmation.

A draft guidance document for Current Good Manufacturing Practice (CGMP) requirements for the production of PET drug products was issued on April 1, 2002. The final CGMP regulation was issued on December 9, 2009, and took effect on December 12, 2011.

The following FDA web page includes various PET-related documents:

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Manufacturing/ucm085783.htm
Blue Shield CA Med Policy: 6.01.49

CPT Codes: 0042T

“FOR BLUE SHIELD CA MEMBERS ONLY”

INDICATIONS FOR CEREBRAL PERFUSION CT:

- Computed tomography (CT)-based perfusion imaging may be considered medically necessary to select patients with anterior large-vessel stroke for mechanical embolectomy.

- CT-based perfusion imaging of the brain is considered investigational for all other indications.

Perfusion imaging using computed tomography (CT) provides an assessment of cerebral blood flow that may assist in the identification of ischemic regions of the brain. This technology is proposed as a method to aid treatment decisions in patients being evaluated for acute ischemic stroke, subarachnoid hemorrhage, cerebral vasospasm, brain tumors, and head trauma.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With acute anterior large-vessel stroke who are</td>
<td>• Computed tomography perfusion imaging (multimodal</td>
<td>• Alternative methods of assessing tissue viability</td>
<td>• Overall survival</td>
</tr>
<tr>
<td>being evaluated for mechanical embolectomy</td>
<td>CT)</td>
<td></td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>Individuals</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With acute stroke who are being evaluated in</td>
<td>• Computed tomography perfusion imaging (multimodal</td>
<td>• Standard workup without computed tomography</td>
<td>• Overall survival</td>
</tr>
<tr>
<td>other situations</td>
<td>CT)</td>
<td>perfusion imaging</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>Individuals</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With subarachnoid hemorrhage and cerebral</td>
<td>• Computed tomography perfusion imaging (multimodal</td>
<td>• Clinical evaluation</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td>vasospasm</td>
<td>CT)</td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td>Individuals</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>With brain tumors</td>
<td>• Computed tomography perfusion imaging (multimodal CT)</td>
<td>• Magnetic resonance imaging</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td>With head trauma</td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
</tbody>
</table>

• Functional outcomes
Blue Shield California Medical Policy 6.01.45

CPT Codes: +0159T

“FOR BLUE SHIELD CA MEMBERS ONLY”

The use of computer-aided evaluation (known as CAD) for the interpretation of a Breast MRI is considered investigational.
CPT Codes: G0235

IMPORTANT NOTE:

PET imaging, any site, not otherwise specified, is a non-covered CPT code.
CPT Codes: G0252

IMPORTANT NOTE:

PET scan for the initial diagnosis of Breast Cancer is considered to be not medically necessary and is therefore a non-covered study.
TOC

S8037 – MR Cholangiopancreatography (MRCP)

CPT Codes: S8037, 74181, 74182, 74183

INTRODUCTION:

Magnetic resonance cholangiopancreatography (MRCP) is a non-invasive radiologic technique for imaging the biliary and pancreatic ducts, and it is used to evaluate patients with cholestatic liver function tests, right upper quadrant pain, and recurrent pancreatitis. The MRCP uses magnetic resonance imaging (MRI) to produce detailed pictures of the pancreas, liver and bile ducts. MRCP is reliable for the diagnosis of ductal abnormalities, e.g., pancreas divisum. It is also used to diagnose bile duct stones and assess the level of obstruction. MRCP is especially useful when a noninvasive exam is desired.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR MRCP:

- For evaluation of suspected congenital anomaly of the pancreaticobiliary tract, e.g., aberrant ducts, choledochal cysts, pancreas divisum or related complications.
- For evaluation of chronic pancreatitis or the complications related to such (pseudocysts and bile duct strictures).
 Preoperative evaluation: Prior to surgery or other invasive procedure.
- Post operative evaluation: For evaluation of suspected biliary abnormalities after surgery or invasive procedure.
- For further evaluation of inconclusive abnormalities identified on other imaging (ultrasound, CT, or MRI).
- For evaluation of abnormality related to the biliary tree based on symptoms or laboratory findings and initial imaging has been performed.

ADDITIONAL INFORMATION RELATED TO MRCP:

- **Request for a follow-up study** - A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

- **MRI imaging** – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O2 tanks may also be contraindicated.

- **Ultrasound** – Ultrasound is the initial imaging technique used for screening suspected biliary or pancreatic disease, but it has limited ability to characterize abnormalities in the biliary and pancreatic ducts.

- **Endoscopic retrograde cholangiopancreatography (ERCP)** – ERCP can combine diagnosis with therapeutic intervention, e.g., removal of stones, but it is an invasive procedure that carries significant
risk of complications, e.g., pancreatitis. ERCP is also technically challenging in patients with post-surgical biliary and/or surgical anastomoses.

Magnetic resonance Cholangiopancreatography (MRCP) – MRCP is a noninvasive method for depicting biliary and pancreatic ducts and assessing the level of obstruction. It is also used to evaluate congenital anomalies of these structures. In clinical practice MRCP is often combined with conventional MRI imaging of the liver and pancreas. MRCP does not require the use of any contrast materials. Unlike ERCP, it does not combine diagnosis with therapeutic intervention. MRCP is not cost effective if the patient will need ERCP mediated intervention after the MRCP. MRCP is preferred over ERCP when a noninvasive examination is needed or when there is a very small likelihood that the patient will need therapeutic intervention afforded by ERCP. Secretin enhanced MR Cholangiopancreatography has been recently developed to improve the diagnostic quality of MRCP images.

Cystic Pancreatic neoplasms In the evaluation of cystic neoplasms, MRP is more sensitive than ERCP in differentiating mural nodules from mucin globules (40–44). It also consistently demonstrates the internal architecture of the main duct and the extent of IPMN better than ERP. (ACG-GL)

Biliary strictures Approximately 15% of biliary strictures in the western world are benign. 80% are related to previous surgery, usually an injury during gallbladder surgery. After liver transplantation anastomatic strictures usually develop 3-6 months after surgery. Rare causes of stricture formation include infectious agents such as TB, parasites and viruses. Other etiologies include recurrent pyogenic cholangitis, Mirizzi syndrome with external compression of the bile duct by an inflamed gallbladder, blunt trauma and an even smaller number of strictures of unknown etiology also occur.

PSC (primary sclerosing cholangitis) Magnetic resonance cholangiography is increasingly available but does not yet visualize the intraductal bile ducts sufficiently to replace direct cholangiography. Neither liver histology nor cholangiography alone will reliably reflect the severity of the disease. They must be used together with symptoms, physical findings, blood tests, and imaging or upper endoscopy tests that indicate the presence and severity of portal hypertension. (Insights into Imaging)

REFERENCES:

INTRODUCTION:

Smoking-related lung cancer is the leading cause of cancer deaths in both men and women in the United States. Treatment for most lung cancer is focused on surgery which is usually curative only when the tumors are very small. Screening for early lung cancer with sputum cytology and chest x-rays has not been successful in reducing deaths from lung cancer. However, in 2011 a large, prospective multicenter trial was published that showed CT Chest screening identified early cancers better than other approaches and reduced the death rate from lung cancer. In 2014, the United States Preventive Service Task Force (USPSTF) recommended annual low dose CT Chest screening (CPT code S8032) for people with current or recent past smoking histories.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR LOW DOSE CT FOR LUNG CANCER SCREENING:

For annual lung cancer screening:

The use of low-dose, non-contrast spiral (helical) multi-detector CT imaging as a screening technique for lung cancer is considered medically necessary ONLY when used to screen for lung cancer for certain high-risk, asymptomatic individuals when ALL of the following criteria are met:

- Individual is between 55-80 years of age; **AND**
- There is at least a 30 pack-year history of cigarette smoking; **AND**
- If the individual is a former smoker, that individual had quit smoking within the previous 15 years.

REFERENCES

CPT Codes:
Anterior Cervical Decompression with Fusion - Single Level** (ACDF) 22548, 22551, 22554
Anterior Cervical Decompression with Fusion - Multiple Level** (ACDF) 22548, 22551, 22554, +22552, +22585
Cervical Posterior Decompression with Fusion - Multiple Levels** 22590, 22595, 22600, +22614
Cervical Posterior Decompression with Fusion - Single Level** 22590, 22595, 22600
Cervical Artificial Disc – Single Level 22856, 22861, 22864
Cervical Artificial Disc – Two Levels (**0375T is not a covered service and is not reimbursable) 22858, 0098T, 0095T
Cervical Posterior Decompression (without fusion) 63001, 63015, 63020, 63040, 63045, 63050, 63051, +63035, +63043, +63048,
Cervical Anterior Decompression (without fusion) 63075, +63076

OVERVIEW:
This guideline outlines the key surgical treatments and indications for common cervical spinal disorders and is a consensus document based upon the best available evidence. Spine surgery is a complex area of medicine, and this document breaks out the clinical indications by surgical type. Operative treatment is indicated only when the natural history of an operatively treatable problem is better than the natural history of the problem without operative treatment. Choice of surgical approach is based on anatomy, the patient’s pathology, and the surgeon’s experience and preference. All operative interventions must be based on a positive correlation with clinical findings, the natural history of the disease, the clinical course, and diagnostic tests or imaging results.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CERVICAL SPINE SURGERY:
A. Anterior Cervical Decompression with Fusion (ACDF) - Single Level
 1) Anterior cervical discectomy and fusion with either a bone bank allograft or autograft with or without plating is the standard approach anteriorly and is most commonly used for disc herniation. The following criteria must be met*:
 a) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with spinal cord compression - immediate surgical evaluation is indicated.
 Symptoms may include:
 i) upper extremity weakness
 ii) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 iii) disturbance with coordination
iv) hyperreflexia
v) Hoffmann sign
vi) positive Babinski sign and/or clonus

OR

b) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with evidence of spinal cord or nerve root compression on Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) imaging - immediate surgical evaluation is indicated.

OR

c) When All of the following criteria are met:

i) Cervical radiculopathy or myelopathy from ruptured disc, spondylosis, spinal instability, or deformity: **AND**

ii) Persistent or recurrent symptoms/pain with functional limitations that are unresponsive to at **least 6 weeks of appropriate conservative treatment.** Documented failure of at least 6 consecutive weeks of **any 2 of** the following physician-directed conservative treatments:

 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block: **AND**

d) **Imaging studies** confirm the presence of spinal cord or spinal nerve root compression (disc herniation or foraminal stenosis) at the level **corresponding with the clinical findings.** Imaging studies may include:

 i) MRI (preferred study for assessing cervical spine soft tissue): **OR**
 ii) CT with or without myelography— indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI).

2) **Cervical spine decompression with fusion as first-line treatment without conservative care measures** in the following clinical cases:

a) As outlined above for myelopathy or progressive neurological deficit scenarios.

b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.

c) Fracture or instability on radiographic films measuring:

 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction **OR**
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

3) **Not Recommended:**
B. **Anterior Cervical Decompression with Fusion (ACDF) - Multiple Level**

1) Anterior cervical discectomy and fusion with either a bone bank allograft or autograft with or without plating is the standard approach anteriorly and is most commonly used for disc herniation. The following criteria must be met*:

 a) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression** - immediate surgical evaluation is indicated. Symptoms may include:

 i) upper extremity weakness
 ii) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 iii) disturbance with coordination
 iv) hyperreflexia
 v) Hoffmann sign
 vi) positive Babinski sign and or clonus

 OR

 b) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.

 OR

 c) **When ALL of the following criteria are met:**

 i) Cervical radiculopathy or myelopathy due to ruptured disc, spondylosis, spinal instability, or deformity; **AND**

 ii) Persistent or recurrent pain/symptoms with functional limitations that are unresponsive to at least 6 weeks of conservative treatment. Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:

 (1) Analgesics, steroids, and/or NSAIDs
 (2) Structured program of physical therapy
 (3) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 (4) Epidural steroid injections and or facet injections /selective nerve root block; **AND**

 d) Imaging studies confirm the presence of spinal cord or spinal nerve root compression (disc herniation or foraminal stenosis) at multiple levels **corresponding with the clinical findings**. Imaging studies may include any of the following:
i) MRI (preferred study for assessing cervical spine soft tissue); OR
ii) CT with or without myelography - indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI)

2) **Cervical spine decompression with fusion performed as first-line treatment without conservative care measures in the following clinical cases:**
 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.
 c) Fracture or instability on radiographic films measuring:
 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction; OR
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

3) **Not Recommended:**
 a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.
 b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. **See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria.**

C. **Cervical Posterior Decompression with Fusion - Single Level**

Surgical indications for cervical spine stenosis/cervical spondylotic myelopathy (CSM) must meet the following criteria*:

1) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression** - immediate surgical evaluation is indicated. Symptoms may include:
 a) upper extremity weakness
 b) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 c) disturbance with coordination
 d) hyperreflexia
 e) Hoffmann sign
 f) positive Babinski sign and / or clonus
 OR

2) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.
 OR

3) **When ALL of the following criteria are met:**
 a) Cervical radiculopathy or myelopathy from ruptured disc, spondylosis, spinal instability, or deformity: **AND**
b) Persistent or recurrent symptoms/pain with functional limitations that is unresponsive to at least 6 weeks of conservative treatment; AND Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block: AND
c) Imaging studies confirm the presence of spinal cord or spinal nerve root compression (disc herniation or foraminal stenosis) at single level corresponding with the clinical findings. Imaging studies may include:
 i) MRI (preferred study for assessing cervical spine soft tissue); OR
 ii) CT with or without myelography - indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI): AND
d) Single level symptomatic cervical disease as evidence by:
 i) cervical spinal stenosis due to cervical spondylotic myelopathy (CSM); or
 ii) cervical spinal stenosis due to ossification of the posterior longitudinal ligament (OPLL); or
 iii) single level spinal cord or nerve root compression due to herniated disc.

4) Cervical spine decompression with fusion performed as first-line treatment without conservative care measures in the following clinical cases:
 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.
 c) Fracture or instability on radiographic films measuring:
 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction: OR
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

5) Not Recommended:
 a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.
 b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria.
 c) In patients with kyphosis or at risk for development of postoperative kyphosis.

D. Cervical Posterior Decompression with Fusion - Multiple Levels
 1) Surgical indications for cervical spine stenosis/cervical spondylotic myelopathy (CSM) must meet the following criteria*:
a) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening spinal cord compression - immediate surgical evaluation is indicated. Symptoms may include:
 i) upper extremity weakness
 ii) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 iii) disturbance with coordination
 iv) hyperreflexia
 v) Hoffmann sign
 vi) positive Babinski sign and/or clonus

OR

b) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.

OR

c) When ALL of the following criteria are met:
 i) Cervical radiculopathy or myelopathy from ruptured disc, spondylosis, spinal instability, or deformity: AND
 ii) Persistent or recurrent symptoms/pain with functional limitations that is unresponsive to at least 6 weeks of conservative treatment: AND Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 (1) Analgesics, steroids, and/or NSAIDs
 (2) Structured program of physical therapy
 (3) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 (4) Epidural steroid injections and/or facet injections/selective nerve root block: AND

d) Imaging studies indicate significant spinal cord or spinal nerve root compression at multiple levels corresponding with the clinical findings. Imaging studies may include:
 i) MRI (preferred study for assessing cervical spine soft tissue): OR
 ii) CT with or without myelography - indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI): AND

e) Multilevel (>=2) symptomatic cervical disease as evidence by:
 i) cervical spinal stenosis due to cervical spondylotic myelopathy (CSM): OR
 ii) cervical spinal stenosis due to ossification of the posterior longitudinal ligament (OPLL): OR
iii) evidence of significant spinal cord or nerve root compression from herniated discs at two or more levels.

2) *Cervical spine decompression with fusion performed as first-line treatment without conservative care measures in the following clinical cases:
 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.
 c) Fracture or instability on radiographic films measuring:
 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction: OR
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

3) Not Recommended:
 a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.
 b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria.
 c) In patients with kyphosis or at risk for development of postoperative kyphosis.

Cervical Fusion for Treatment of Axial Neck Pain:
 In patients with non-radicular cervical pain for whom fusion is being considered, ALL of the following criteria must be met:
 1) Improvement of the symptoms has failed or plateaued, and the residual symptoms of pain and functional disability are unacceptable at the end of 6 to 12 consecutive months of appropriate, active treatment, or at the end of longer duration of non-operative programs for debilitated patients with complex problems [NOTE: Mere passage of time with poorly guided treatment is not considered an active treatment program]; AND

 2) All pain generators are adequately defined and treated; AND

 3) All physical medicine and manual therapy interventions are completed; AND

 4) X-ray, MRI, or CT demonstrating disc pathology or spinal instability; AND

 5) Spine pathology limited to one or two levels unless other complicating factors are involved: AND

 6) Psychosocial evaluation for confounding issues addressed.

 NOTE: The effectiveness of three-level or greater cervical fusion for non-radicular pain has not been established.

VI. Cervical Posterior Decompression
 1) Surgical indications for cervical nerve root decompression due to radiculopathy, disc herniation or foraminal stenosis. A posterior laminotomy and discectomy is occasionally used for patients with specific lateral disc herniations when the surgeon’s preference is that the individual would respond better with a posterior approach than an anterior one.

 The following criteria must be met*:
Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening spinal cord compression - immediate surgical evaluation is indicated. Symptoms may include:

a) upper extremity weakness
b) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
c) disturbance with coordination
d) hyperreflexia
e) Hoffmann sign
f) positive Babinski sign and/or clonus

OR

2) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.

OR

3) When ALL of the following criteria are met:

a) Cervical radiculopathy from ruptured disc, spondylosis, or deformity: AND
b) Persistent or recurrent symptoms/pain with functional limitations that is unresponsive to at least 6 weeks of appropriate conservative treatment: AND Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections/selective nerve root block: AND
c) Imaging studies confirm the presence of spinal cord or spinal nerve root compression at the level(s) corresponding with the clinical findings. Imaging studies may include any of the following:
 i) MRI (preferred study for assessing cervical spine soft tissue): OR
 ii) CT with or without myelography—indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI):

4) Cervical decompression performed as first-line treatment without conservative care in the following clinical cases:

a) As outlined above for myelopathy or progressive neurological deficit scenarios.
b) Spinal cord or nerve root compression due to tumor, infection or trauma.

5) Not Recommended.
a) In asymptomatic or mildly symptomatic cases.
b) In cases of pain alone, without neurological deficits and abnormal imaging findings. *See E. Cervical Fusion for Treatment of Axial Neck Pain Criteria.*

VII. Cervical Artificial Disc Replacement (Single or Two Level)

This involves the insertion of a prosthetic device into the cervical intervertebral space with the goal of maintaining physiologic motion at the treated cervical segment. The use of artificial discs in motion-preserving technology is based on the surgeon’s preference and training. Only FDA-approved artificial discs are appropriate.

1) **Indications for artificial cervical disc replacement are as follows:**
 a) Skeletally mature patient: **AND**
 b) Patient has intractable radiculopathy caused by one or two level disease (either herniated disc or spondolytic osteophyte) located at C3-C7: **AND**
 c) Persistent or recurrent symptoms/pain with functional limitations that are unresponsive to at least 6 weeks of appropriate conservative treatment. Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block: **AND**
 d) Imaging studies confirm the presence of compression at the level corresponding with the clinical findings (MRI or CT): **AND**
 e) No prior neck surgery: **AND**
 f) Use of an FDA-approved prosthetic intervertebral discs

2) **Cervical Artificial Disc Replacement is NOT indicated when any of the following clinical scenarios exists:**
 a) Symptomatic multiple level disease affecting 3 or more levels
 b) Adjacent level disease: degenerative disease adjacent to a previous cervical fusion
 c) Infection (at site of implantation or systemic)
 d) Osteoporosis or osteopenia
 e) Instability
 i) Translation greater than 3mm difference between lateral flexion-extension views at the symptomatic levels:
 ii) 11 degrees of angular difference between lateral flexion-extension views at the symptomatic levels
 f) Sensitivity or allergy to implant materials
 g) Severe spondylosis defined as:
 i) > 50% disc height loss compared to minimally or non-degenerated levels: OR
ii) Bridging osteophytes' OR

iii) Absence of motion on lateral flexion–extension views at the symptomatic site

h) Severe facet arthropathy

i) Ankylosing spondylitis

j) Rheumatoid arthritis

k) Previous fracture with anatomical deformity

l) Ossification of the posterior longitudinal ligament (OPLL)

m) Active cervical spine malignancy

VIII. **Cervical Fusion without Decompression**

1) Cervical fusion without decompression will be reviewed on a **case-by-case basis**. Atraumatic instability due to Down Syndrome–related spinal deformity, rheumatoid arthritis, or basilar invagination are uncommon, but may require cervical fusion.

IX. **Cervical Anterior Decompression (without fusion)**

2) All requests for anterior decompression without fusion will be reviewed on a **case-by-case basis**.

X. **ADDITIONAL INFORMATION:**

1) **CPT Codes**:

 a) Anterior Cervical Decompression with Fusion - Single Level** (ACDF) 22548, 22551, 22554

 b) Anterior Cervical Decompression with Fusion - Multiple Level** (ACDF) 22548, 22551, 22554, +22552, +22585

 c) Cervical Posterior Decompression with Fusion - Multiple Levels** 22590, 22595, 22600, +22614

 d) Cervical Posterior Decompression with Fusion - Single Level** 22590, 22595, 22600

 e) Cervical Artificial Disc – Single Level 22856, 22861, 22864

 f) Cervical Artificial Disc – Two Levels (**0375T is not a covered service and is not reimbursable) 22858, 0098T, 0095T

 g) Cervical Posterior Decompression (without fusion) 63001, 63015, 63020, 63040, 63045, 63050, 63051, +63035, +63043, +63048,

 h) Cervical Anterior Decompression (without fusion) 63075, +63076

2) **Conservative Therapy**: (Musculoskeletal) includes primarily physical therapy and/or injections; and a combination of modalities, such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, diathermy, chiropractic treatments, or physician supervised home exercise program. Part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

3) **Home Exercise Program** - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

 a) Information provided on exercise prescription/plan AND
b) Follow up with member with documentation provided regarding completion of HEP, (after 4 – 6 week period) or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

4) A comprehensive assimilation of factors should lead to a specific diagnosis with positive identification of the pathologic condition(s).
 a) Early intervention may be required in acute incapacitating pain or in the presence of progressive neurological deficits.
 b) Operative treatment is indicated when the natural history of surgically treated lesions is better than the natural history for non-operatively treated lesions.
 c) Patients may present with localized pain or severe pain in combination with numbness, extremity weakness, loss of coordination, gait issues, or bowel and bladder complaints. Nonoperative treatment continues to play an important role in the care of patients with degenerative cervical spine disorders. If these symptoms progress to neurological deficits, from corresponding spinal cord or nerve root compression, than surgical intervention may be warranted.
 d) All patients being considered for surgical intervention should first undergo a comprehensive neuromusculoskeletal examination to identify those pain generators that may either respond to non-surgical techniques, or may be refractory to surgical intervention.
 e) If operative intervention is being considered, particularly those procedures that require a fusion, it is recommended that the person refrain from smoking for at least six weeks prior to surgery and during the time of healing.
 f) In situations requiring the possible need for operation, a second opinion may be necessary. Psychological evaluation is strongly encouraged when surgery is being performed for isolated axial pain to determine if the patient will likely benefit from the treatment.
 g) It is imperative for the clinician to rule out non-physiologic modifiers of pain presentation, or non-operative conditions mimicking radiculopathy, myelopathy or spinal instability (peripheral compressive neuropathy, chronic soft tissue injuries, and psychological conditions), prior to consideration of elective surgical intervention.

5) Degenerative cervical spine disorders, while often benign and episodic in nature, can become debilitating, resulting in axial pain and neurological damage to the spinal cord or roots. Compression on the nerve root and / or spinal cord may be caused by (1) a herniated disc with or without extrusion of disc fragments and/or (2) degenerative cervical spondylosis.

XI. **Anterior Approaches – Additional Information:**

1) Anterior surgical approaches to cervical spine decompression emerged in the 1950s in response to technical limitations experienced with posterior approaches, including restricted access to and exposure of midline bony spurs and disc fragments.

2) The first reports in the literature describe anterior cervical discectomy combined with a spinal fusion procedure (ACDF). Fusion was added to address concerns about potential for loss of spinal stability and disc space height, leading to late postoperative complications such as kyphosis and radicular pain (Sonntag and Klara, 1996; Dowd and Wirth, 1999; Matz et al.,
2009a; Matz et al., 2009b; Denaro and Di Martino, 2011; Botelho et al., 2012; van Middelkoop et al., 2012).

3) Anterior cervical fusion (ACF) accounted for approximately 80% of cervical spine procedures performed in the United States between 2002 and 2009, while posterior cervical fusion (PCF) accounted for 8.5% of these procedures (Oglesby et al., 2013).

4) Anterior Cervical Discectomy and Fusion (ACDF) – removal of all or part of a herniated or ruptured disc or spondylolytic bony spur to alleviate pressure on the nerve roots or on the spinal cord in patients with symptomatic radiculopathy. Discectomy is most often combined with fusion to stabilize the spine.

XII. Posterior Approaches

1) Laminectomy – removal of the bone between the spinal process and facet pedicle junction to expose the neural elements of the spine; this allows for the inspection of the spinal canal, identification and removal of pathological tissue, and decompression of the cord and roots.

2) Laminoplasty – the opening of the lamina to enlarge the spinal canal. There are several laminoplasty techniques; all aim to alleviate cord compression by reconstructing the spinal canal. Laminoplasty is commonly performed to decompress the spinal cord in patients with multilevel degenerative spinal stenosis and neutral or lordotic alignment.

3) Laminoforaminotomy (also known as posterior discectomy) – the creation of a small window in the lamina to facilitate removal of arthritic bone spurs and herniated disc material pressing on the nerve root as it exits through the foramen. The procedure widens the opening of the foramen so that the nerve exits without being compressed.

XIII. REFERENCES

18) Matz PG, Ryken TC, Groff MW, et al.: Joint Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and Congress of Neurological...

XIV. **Fusion References**

OVERVIEW:

This guideline outlines the key surgical treatments and indications for common lumbar spinal disorders and is a consensus document based upon the best available evidence. Spine surgery is a complex area of medicine and this document breaks out the treatment modalities for lumbar spine disorders into surgical categories: lumbar discectomy/microdiscectomy, lumbar decompression, and lumbar fusion surgery. See the additional information section for procedures considered not medically necessary.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INTRODUCTION

I. Lumbar Discectomy/Microdiscectomy: is a surgical procedure to remove part of the damaged spinal disc. The damaged spinal disc herniates into the spinal canal and compresses the nerve roots. Nerve root compression leads to symptoms like low back pain, radicular pain, numbness and tingling, muscular weakness, and paresthesia. Typical disc herniation pain is exacerbated with any movement that causes the disc to increase pressure on the nerve roots.

II. Lumbar Decompression (Laminectomy, Laminotomy, Facetectomy, and Foraminotomy): Laminectomy is common decompression surgery. The American Association of Neurological Surgeons defines laminectomy as a surgery to remove the back part of vertebra, lamina, to create more space for the spinal cord and nerves. The most common indication for laminectomy is spinal stenosis. Spondylolisthesis and herniated disk are also frequent indications for laminectomy. Decompression surgery is usually performed as part of lumbar fusion surgery.

III. Lumbar Fusion Surgery: Lumbar spinal fusion (arthrodensis) is a surgical procedure used to treat spinal conditions of the lumbar, e.g., degenerative disc disease, spinal stenosis, injuries/fractures of the spine, spinal instability, and spondylolisthesis. Spinal fusion is a “welding” process that permanently fuses or joins together two or more adjacent bones in the spine, immobilizing the vertebrae and restricting motion at a painful joint. It is usually performed after other surgical procedures of the spine, such as discectomy or laminectomy. The goal of fusion is to increase spinal stability, reduce irritation of the affected nerve roots, compression on the spinal cord, disability, and pain and/or numbness. Clinical criteria for single level fusion versus multiple level fusions are outlined under the indications section.
I. INDICATIONS FOR LUMBAR & PRE-SACRAL SURGERY: (This section of the clinical guidelines provides the clinical criteria for each of the lumbar and pre-sacral spine surgery categories.)

- **Indications for Lumbar Discectomy/Microdiscectomy**
 - **Surgical indications for inter-vertebral disc herniation**:
 a) Primary radicular symptoms noted upon clinical exam that significantly hinders daily activities; **AND**
 b) Failure to improve with at least six (6) consecutive weeks of appropriate conservative treatment; And Documented failure of at least six (6) consecutive weeks of **any 2** of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block; **AND**
 c) Imaging studies showing evidence of inter-vertebral disc herniation that correlate exactly with the patients symptoms / signs

- **Other indications**: Microdiscectomy may be used as the first line of treatment (**no conservative treatment required**) in the following clinical scenarios:
 a) Progressive nerve compression resulting in an acute motor neurologic deficit sensory or motor due to herniated disc. The neurological deficits should be significant: 0-2/5 on the motor function scale for L5 or S1 roots; 0-3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with conservative treatment and are not considered an indication for early surgery; **OR**
 b) Cauda equina syndrome (loss of bowel or bladder control).

NOTE: Percutaneous lumbar discectomy, radiofrequency disc decompression, and related procedures are deemed investigational procedures and are not approved. Discectomy and microdiscectomy are the gold standards.

II. Indications for Lumbar Decompression: Laminectomy, Laminotomy, Facetectomy, and Foraminotomy. These procedures allow decompression by partial or total removal of various parts of vertebral bone and ligaments. **Surgical Indications for spinal canal decompression due to lumbar spinal stenosis**:

1) Neurogenic claudication, and/or radicular leg pain that impairs daily activities for **at least twelve (12) weeks**: **AND**

2) Failure to improve with at least 6 weeks of appropriate conservative therapy. Documented failure of at least 6 consecutive weeks of **any 2** of the following physician-directed conservative treatments:
 a) Analgesics, steroids, and/or NSAIDs
 b) Structured program of physical therapy
c) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician

d) Epidural steroid injections and or facet injections /selective nerve root block: **AND**

3) Imaging findings demonstrating moderate to severe stenosis consistent with clinical signs/symptoms.

4) **Other Indications:** Lumbar decompression may be used as the first line of treatment (no conservative treatment required) in any of the following clinical scenarios:

 a) Progressive nerve compression resulting in an acute neurologic (sensory or motor) deficit. The neurological deficits should be significant—0–2/5 on the motor function scale for L5 or S1 roots; 0–3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with conservative treatment and are not considered an indication for early surgery.

 b) Cauda equina syndrome (loss of bowel or bladder control)

 c) Spinal stenosis due to tumor, infection, or trauma

 NOTE: Percutaneous decompressions, endoscopic decompression, and related procedures (laser, etc.) are deemed investigational procedures and are not approved. Open or microdecompressions via laminectomy or laminotomy are the gold standards.

III. Indications for Lumbar Spine Fusion: Single Level with or without decompression

i) Because of variable outcomes with fusion surgery, patients should be actively involved in the decision-making process and provided appropriate decision-support materials when considering this intervention. The following indicators must be present:

 a) Lumbar back pain, neurogenic claudication, and/or radicular leg pain without sensory or motor deficit that impairs daily activities for at least 6 months: **AND**

 b) Failure to improve with at least 6 weeks of appropriate conservative therapy (six months for isolated LBP). Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:

 i) Analgesics, steroids, and/or NSAIDs

 ii) Structured program of physical therapy

 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician

 iv) Epidural steroid injections and or facet injections /selective nerve root block: **AND**

 c) Imaging studies corresponding to the clinical findings: **AND**

 d) At least one of the following clinical conditions:

 i) Spondylolisthesis [Neural Arch Defect -Spondyloytic spondylolisthesis, degenerative spondylolisthesis, and congenital unilateral neural arch hypoplasia]: **OR**

 ii) Evidence of segmental instability -Excessive motion, as in degenerative spondylolisthesis, segmental instability, and surgically induced segmental instability: **OR**
iii) Revision surgery for failed previous operation(s) for pseudoarthrosis at the same level at least 6-12 months from prior surgery** if significant functional gains are anticipated; OR

iv) Revision surgery for failed previous operation(s) repeat disk herniations if significant functional gains are anticipated (Note: Many recurrent disc herniations can be treated with discectomy alone, so specific indications for the addition of fusion will be required); OR

v) Fusion for the treatment of spinal tumor, cancer, or infection; OR

vi) Chronic low back pain or degenerative disc disease (disc degeneration without significant neurological compression presenting with low back pain) must have failed at least 6 months of appropriate active non-operative treatment (completion of a comprehensive cognitive-behavioral rehabilitation program is mandatory) and must be evaluated on a case-by-case basis.

NOTE: The results of several randomized trials suggests that in many degenerative cases uninstrumented posterolateral intertransverse fusion has similar results to larger instrumented (PLIF, TLIF, etc.) fusion techniques with fewer morbidities and less likelihood of revision surgery. Accordingly, specific findings suggesting more significant instability should be present when larger techniques are used (gapping of facets, gross motion on flexion/extension radiographs, wide disc spaces).

2) *Other Indications*: Lumbar spinal fusion may be used as the first line of treatment (no conservative treatment required) in the following clinical scenarios:

 a) Progressive nerve compression resulting in an acute neurologic deficit (motor) AND

 i) one of the aforementioned clinical conditions, except chronic low back pain or degenerative disc disease. The neurological deficits must be significant: 0-2/5 on the motor function scale for L5 or S1 roots; or 0-3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with conservative treatment and are not considered an indication for early surgery.

 b) Cauda equina syndrome (loss of bowel or bladder control)

IV. **REPEAT LUMBAR SPINE FUSION OPERATIONS**: Repeat lumbar fusion operations will be reviewed on a case-by-case basis upon submission of medical records and imaging studies that demonstrate remediable pathology. The below must also be documented and available for review of repeat fusion requests:

1) Rationale as to why surgery is preferred over other non-invasive or less invasive treatment procedures.

2) Signed documentation that the patient has participated in the decision-making process and understands the high rate of failure/complications.

Instrumentation, bone formation or grafting materials, including biologics, should be used at the surgeon's discretion; however, use should be limited to FDA approved indications regarding the specific devices or biologics.
NOTE: Pre-sacral, axial lumbar interbody fusion (AxiaLIF) is not an approved surgical approach due to insufficient evidence. Artificial lumbar disc replacement or other lumbar implants are not an approved procedure due to insufficient evidence.

V. **Indications for multi-level fusions with or without decompression (all multi-level fusion surgeries will be reviewed on a case-by-case basis).** Because of variable outcomes with fusion surgery, patients should be actively involved in the decision-making process and provided appropriate decision-support materials when considering this intervention. The following clinical indications must be present:

1) Lumbar back pain, neurogenic claudication, and/or radicular leg pain without sensory or motor deficit that impairs daily activities for **at least 6 months**; AND

2) Failure to improve with at least 6 weeks of appropriate conservative therapy. Documented failure of 6 consecutive weeks of **any 2** of the following physician-directed conservative treatments:
 a) Analgesics, steroids, and/or NSAIDs
 b) Structured program of physical therapy
 c) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 d) Epidural steroid injections and or facet injections /selective nerve root block; **AND**

3) Imaging studies corresponding to the clinical findings; **AND**

4) At least one of the following clinical conditions:
 a) Multiple level spondylolisthesis (Note: Fusions in cases with single level spondylolisthesis should be limited to the unstable level); **OR**
 b) Fusion for the treatment of spinal tumor, trauma, cancer, or infection affecting multiple levels; **OR**
 c) Intraoperative segmental instability

5) *Other Indications:* Lumbar spinal fusion may be used as the first line of treatment (**no conservative treatment required**) in the following clinical scenarios:
 a) Progressive nerve compression resulting in an acute neurologic deficit (motor), **AND** one of the aforementioned clinical conditions. The neurological deficits must be significant: 0-2/5 on the motor function scale for L5 or S1 roots; or 0-3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with appropriate conservative treatment and are not considered an indication for early surgery.
 b) Instrumentation, bone formation or grafting materials, including biologics, should be used at the surgeon’s discretion; however, use should be limited to FDA approved indications regarding the specific devices or biologics.
 c) This lumbar surgery guideline does not address spinal deformity surgeries or the clinical indications for spinal deformity surgery [CPT codes 22800-22812].

NOTE: Pre-sacral, axial lumbar interbody fusion (AxiaLIF) is not an approved surgical approach due to insufficient evidence.
VI. CONTRAINDICATIONS FOR SPINE SURGERY (Note: Cases will not be approved if the below contraindications exist):

1) **Medical contraindications** to surgery, e.g., severe osteoporosis; infection of soft tissue adjacent to the spine and may be at risk for spreading to the spine; severe cardiopulmonary disease; anemia; malnutrition and systemic infection

2) **Psychosocial risk factors.** It is imperative to rule out non-physiologic modifiers of pain presentation or non-operative conditions mimicking radiculopathy or instability (e.g., peripheral neuropathy, piriformis syndrome, myofascial pain, sympathetically mediated pain syndromes, sacroiliac dysfunction, psychological conditions, etc.) prior to consideration of elective surgical intervention. Patients with clinically significant depression or other psychiatric disorders being considered for elective spine surgery will be reviewed on a case-by-case basis and the surgery may be denied for risk of failure.

3) **Active Tobacco or Nicotine** use prior to fusion surgery. Patients must be free from smoking and/or nicotine use for at least six weeks prior to surgery and during the entire period of fusion healing.

4) **Morbid Obesity.** Contraindication to surgery in cases where there is significant risk and concern for improper post-operative healing, post-operative complications related to morbid obesity, and/or an inability to participate in post-operative rehabilitation. These cases will be reviewed on a case-by-case basis and may be denied given the risk of failure.

III. ADDITIONAL INFORMATION

1) **Spinal surgeries should be performed only by those with extensive surgical training** (neurosurgery, orthopaedic surgery)

 a) **Services Not Covered:** The following procedures are considered either still under investigation or are not recommended based upon the current evidence: Percutaneous lumbar discectomy; Laser discectomy; Percutaneous Radiofrequency Disc Decompression; intradiscal electrothermal annuloplasty (IDET) or more commonly called IDET (Intradiscal Electrothermal therapy); Nucleus Pulpous Replacement; Pre-Sacral Fusion. **PERCUTANEOUS DISCECTOMY** is an invasive operative procedure to accomplish partial removal of the disc through a needle which allows aspiration of a portion of the disc trocar under imaging control. It’s only indication is in order to obtain diagnostic tissue, due to lack of evidence to support long-term improvement compared to gold standard discectomy. This includes radiofrequency disc decompression.

 b) **LASER DISCECTOMY** is a procedure which involves the delivery of laser energy into the center of the nucleus pulposus using a fluoroscopically guided laser fiber under local anesthesia. The energy denatures protein in the nucleus, causing a structural change which is intended to reduce intradiscal pressure. Its effectiveness has not been fully established.

 c) **INTRADISCAL ELECTROTHERMAL ANNULOPLASTY (IDEA) (more commonly called IDET, or Intradiscal Electrothermal therapy)** is an outpatient non-operative procedure in which a wire is guided into the identified painful disc using fluoroscopy. The wire is then heated at the nuclear-annular junction within the disc. It has not been shown to be effective.

 d) **NUCLEUS PULPOSUS REPLACEMENT** involves the introduction of a prosthetic implant into the intervertebral disc, replacing the nucleus pulposus while preserving the
annulus fibrosus. It has not been shown to be effective relative to other gold standard interventions.

3) **Conservative Therapy**: (Musculoskeletal) includes primarily physical therapy and/or injections; and a combination of modalities, such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, diathermy, chiropractic treatments, or physician supervised home exercise program. Part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

4) **Home Exercise Program** (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with information provided regarding completion of HEP (after suitable 4-6 week period), or inability to complete HEP due to physical reason – i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

5) **Isolated Low Back Pain** - Pain isolated to the lumbar region of the spine and the surrounding paraspinal musculature. Also referred to ‘mechanical low back pain’ or ‘discogenic pain’. No associated neurogenic claudication or radiculopathy.

6) **Claims Billing & Coding**:
 a) NIA uses a combination of internally developed edits in addition to an enhanced set of industry standard editing. NIA’s Claims Edit Module is a group of system edits that run multiple times per day. Edits that are part of this module include industry standard edits that apply to spine surgery services and NIA custom edits developed specifically for spine surgery. The following describes each of the edits NIA applies:
 i) **Outpatient Code Editor (OCE)**: This edit performs all functions that require specific reference to HCPCS codes, HCPCS modifiers, and ICD-9-CM diagnosis codes. The OCE only functions on a single claim and does not have any cross claim capabilities. NIA is consistent with CMS.
 ii) **National Correct Coding Initiative (NCCI) editing**: The edit prevents improper payment when incorrect code combinations are reported. The NCCI contains two tables of edits. The Column One/Column Two Correct Coding Edits table and the Mutually Exclusive Edits table include code pairs that should not be reported together for a number of reasons explained in the Coding Policy Manual. NIA is consistent with CMS.

1) Incidental edits: This edit applies if a procedure being billed is a component of another procedure that occurred on the same date of service for the same provider and tax ID and claimant.

2) Mutually exclusive editing: This edit applies if a procedure being billed is mutually exclusive with a procedure that occurred on the same date of service for the same provider tax ID and claimant.

7) **Multiple Procedure Discounts (MPD)**: This edit applies a reduction to the second and any other subsequent services by the same provider, in the same setting, for the same member. We typically apply a 50% reduction. NIA follows the CMS methodology that began in January
2011 which allows for application of MPD to codes within CMS’s two specific advanced imaging code families. However, NIA differs from CMS in that we apply MPD to all provider types unless health plan contracts prohibit this.

8) **Lumbar Fusion** - Fusions can be performed either anteriorly, laterally, or posteriorly, or via a combined approach; although simple posterolateral fusions are indicated in the great majority of cases requiring fusion. Aggressive surgical approaches to fusion may be an indication for denial of cases (when such techniques have not been demonstrated to be superior to less morbid techniques) or recommendation for alternative procedure. These are the surgical approaches:
 a) Intertransverse Fusion or Posterolateral Fusion
 b) Anterior Interbody Fusion (ALIF)
 c) Lateral or Transpsoas Interbody Fusion (XLIF)
 d) Posterior or Transforaminal Interbody Fusion (PLIF or TLIF)
 e) Anterior/posterior Fusion (360-degree)
 f) Pre-sacral, axial lumbar interbody fusion (AxiaLIF) is still being investigated and is not recommended.

9) Use of bone grafts including autologous or allograft which might be combined with metal or biocompatible devices to produce a rigid, bony connection between two or more adjacent vertebrae are common. Bone formation or grafting materials including biologics should be used at the surgeon’s discretion; however, use of biologics should be limited to FDA approved indications in order to limit complications (especially BMP).

10) All operative interventions must be based upon positive correlation of clinical findings, clinical course, and diagnostic tests and must be performed by surgeons with appropriate training (neurosurgery, orthopaedic surgery). A comprehensive assimilation of these factors must lead to a specific diagnosis with positive identification of pathologic condition(s). A failure of accurate correlation may be an indication for denial of cases. It is imperative to rule out non-physiologic modifiers of pain presentation or non-operative conditions mimicking radiculopathy, sympathetically mediated pain syndromes, or instability (e.g., peripheral neuropathy, myofascial pain, etc.) prior to consideration of elective surgical intervention.

11) Operative treatment is indicated when the natural history of surgically treated lesions is better than the natural history for non-operatively treated lesions.
 a) All patients being considered for surgical intervention should first undergo a comprehensive neuro-musculoskeletal examination to identify mechanical pain generators that may respond to non-surgical techniques or may be refractory to surgical intervention.
 b) While sufficient time allowances for non-operative treatment are required to determine the natural cause and response to non-operative treatment of low back pain disorders, timely decision making for operative intervention is critical to avoid de-conditioning and increased disability (exclusive of “emergent” or urgent pathology such as cauda equina syndrome or associated rapidly progressive neurologic loss).

12) In general, if the program of non-operative treatment fails, operative treatment is indicated when:
a) Improvement of the symptoms has plateaued or failed to occur and the residual symptoms of pain and functional disability are unacceptable at the end of 6 to 12 weeks of active treatment, or at the end of longer duration of non-operative programs for debilitated patients with complex problems; and/or

b) Frequent recurrences of symptoms cause serious functional limitations even if a non-operative active treatment program provides satisfactory relief of symptoms, and restoration of function on each recurrence.

13) **Lumbar spinal stenosis and associated lumbar spondylolisthesis** - Spinal stenosis is narrowing of the spinal column or of the neural foramina where spinal nerves leave the spinal column, causing pressure on the spinal cord. The most common cause is degenerative changes in the lumbar spine. Neurogenic claudication is the most common symptom, referring to “leg symptoms encompassing the buttock, groin and anterior thigh, as well as radiation down the posterior part of the leg to the feet.” In addition to pain, leg symptoms can include fatigue, heaviness, weakness and/or paresthesia. Some patients may also suffer from accompanying back pain. Symptoms are worse when standing or walking and are relieved by sitting. Lumbar spinal stenosis is often a disabling condition, and it is the most common reason for lumbar spinal surgery in adults over 65 years.

14) **Degenerative lumbar spondylolisthesis** - is the displacement of a vertebra in the lower part of the spine: one lumbar vertebra slips forward on another with an intact neural arch and begins to press on nerves. The slippage occurs at the L4-L5 level most commonly. The most common cause, in adults, is degenerative disease although it may also result from bone diseases and fractures. Spondylolisthesis seldom occurs before the age of 50 years and it disproportionately affects women, especially black women. Degenerative spondylolisthesis is not always symptomatic. The indications for fusion in this group are evolving and as more evidence emerges, changes to the accepted indications and acceptable techniques used may be made.

15) **Lumbar degenerative disease without stenosis or spondylolisthesis** - Spondylosis is an umbrella term describing age-related degeneration of the spine. Lumbar degenerative disease without stenosis or spondylolisthesis is characterized by disabling low back pain and spondylosis at L4-5, L5-S1, or both levels.

VIII. REFERENCES

CPT Codes: Single Level - 22857, 22862, 22865
Multiple Levels - 0163T, 0164T, 0165T

“FOR BLUE SHIELD CA MEMBERS ONLY”

Policy Statement:
1. Lumbar total disc arthroplasty (artificial disc replacement) is considered **medically necessary** when **all** of the following indications are met:

 1) The individual is between the ages of 18 to 60
 2) Degenerative disc disease, or significant discogenic back pain with disc degeneration, is confirmed by documented patient history, physical examination and key radiographic studies outlined below, with no more than Grade 1 (low level) spondylolisthesis demonstrated on x-ray at the operative level. Advanced single level disease noted on MRI and plain radiographs at L4–5 or L5–S1 characterized by moderate to severe degeneration of the disc.
 3) Imaging confirms absence of significant facet arthropathy at operative level.
 4) At least six months of non-operative (conservative) treatment have failed to resolve symptoms. Conservative care is focused multi-modal nonoperative treatment that must include a physical therapy/rehabilitation program with cognitive-behavioral components. Treatment may also include pain management injections and active exercise programs. This must be clearly outlined in the medical record.
 5) Disc reconstruction with the device is performed at only one (single) level using an anterior retroperitoneal approach
 6) The device used as the disc replacement device is FDA-approved for lumbar disc replacement and is used in accordance with FDA labelling
 7) Medical necessity can ONLY be assessed if **NONE** of the following contraindications are present (see Policy Guidelines):
 a) Disease above L4–L5 (L3 for ProDisc-L)
 b) Active systemic or local infection
 c) Osteoporosis or osteopenia (DEXA bone mineral density T-score less than or equal to -1.0), or vertebral bodies compromised by disease or prior trauma
 d) Allergy or sensitivity to implant materials
 e) Isolated lumbar radiculopathy (especially due to herniated disc), or chronic radiculopathy (unremitting especially leg symptoms lasting over 1 year)
 f) Spinal stenosis, or spinal deformity (scoliosis)
 g) Spondylolisthesis greater than Grade 1
 h) Disc degeneration requiring treatment at more than one level
 i) Severe facet arthropathy or joint degeneration
 j) Presence of free disc fragment
 k) Myelopathy
II. Artificial lumbar disc replacement is considered **not medically necessary** in all other circumstances, including artificial disc arthroplasty done at more than one spinal level, and hybrid (combination artificial disc and fusion) procedures.

III. **ADDITIONAL INFORMATION**

1) **Policy Guidelines:**
 Contraindications are related to the level being considered for surgery.

2) **Conservative Care**
 Conservative care is focused multi-modal nonoperative treatment that must include a physical therapy/rehabilitation program with cognitive-behavioral components. Treatment may also include pain management injections and active exercise programs. This must be clearly outlined in the medical record.
CPT Codes:
Cervical Thoracic Region: 62320, 62321, 64479 (+64480)
Lumbar Sacral Region: 62322, 62323, 64483 (+64484)

INTRODUCTION:

Therapeutic Spinal Epidural Injections or Select Nerve Root Blocks (Transforaminal) are types of interventional pain management procedures. The therapeutic use of epidural injections is for short-term pain relief associated with acute back pain or exacerbation of chronic back pain. With therapeutic injections a corticosteroid is injected close to the target area with the goal of pain reduction. Epidural injections should be used in combination with other active conservative treatment* modalities and not as stand alone treatment for long-term back pain relief. There are different approaches used when administering spinal epidural injections:

1. **Interlaminar** epidural injections, with steroids, access the epidural space between two vertebrae (Interlaminar) to treat cervical, lumbar or thoracic pain with radicular pain. These procedures should be performed using fluoroscopic guidance. Interlaminar epidural injections are the most common type of epidural injection.

2. **Transforaminal** epidural injections (also called selective nerve root blocks) access the epidural space via the intervertebral foramen where the spinal nerves exit (cervical, lumbar or thoracic region). It is used both diagnostically and therapeutically. Some studies report lack of evidence and risks of transforaminal epidural injections. These procedures are always aided with fluoroscopic guidance.

3. **Caudal** epidural injections, with steroids, are used to treat back and lower extremity pain, accessing the epidural space through the sacral hiatus, providing access to the lower nerve roots of the spine. These procedures should be performed using fluoroscopic guidance. Failed back surgery syndrome is the most common reason for the caudal approach.

The rationale for the use of spinal epidural injections is that the sources of spinal pain, e.g., discs and joints, are accessible and amendable to neural blockade.

Medical necessity management for epidural injections includes an initial evaluation including history and physical examination and a psychosocial and functional assessment. The following must be determined: nature of the suspected organic problem; non-responsiveness to active conservative treatment*; level of pain and functional disability; conditions which may be contraindications to epidural injections; and responsiveness to prior interventions.

Interventional pain management specialists do not agree on how to diagnose and manage spinal pain; there is a lack of consensus with regards to the type and frequency of spinal interventional techniques for treatment of spinal pain. The American Society of Interventional Pain Physicians (ASIPP) guidelines and International Spine Intervention Society (SIS) guidelines provide an algorithmic approach which provides a step-by-step procedure for managing chronic spinal pain based upon evidence-based guidelines. It is...
based on the structural basis of spinal pain and incorporates acceptable evidence of diagnostic and therapeutic interventional techniques available in managing chronic spinal pain.

The guidelines and algorithmic approach referred to above include the evaluation of evidence for diagnostic and therapeutic procedures in managing chronic spinal pain and recommendations for managing spinal pain. The Indications and Contraindications presented within this document are based on the guidelines and algorithmic approach. Prior to performing this procedure, shared decision-making between patient and physician must occur, and patient must understand the procedure and its potential risks and results (moderate short-term benefits, and lack of long-term benefits).

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

I. INDICATIONS FOR EPIDURAL INJECTIONS OR SELECTIVE NERVE BLOCKS (caudal, interlaminar, and transformaminal) (Injection of local anesthetics with corticosteroids)

1) Acute pain or exacerbation of chronic radicular pain with the following clinical timeframes:
 i. Neck or back pain with acute radicular pain:
 i) after 2 weeks or more of acute radicular pain that has failed to respond or poorly responded to conservative (including medication) management unless the medical reason this conservative treatment cannot be done is clearly documented; OR
 ii. Failed back surgery syndrome or epidural fibrosis causing radicular pain:
 i) typically not done immediately post-surgery. Documentation requires a medical reason that clearly indicates why an injection is needed.
 ii) patient must engage in some form of other active conservative treatment* for a minimum of 6 weeks in the last 6 months or details of engagement in other forms of active conservative non-operative treatment if the patient had any prior spinal injections prior to epidural injections unless the medical reason this conservative treatment cannot be done is clearly documented; OR
 iii. Spinal stenosis (foraminal, central or disc disease) causing radicular pain
 iv. patient must engage in some form of other active conservative treatment* for a minimum of 6 weeks in the last 6 months or details of engagement in other forms of active conservative non-operative treatment if the patient had any prior spinal injections prior to epidural injections unless the medical reason this conservative treatment cannot be done is clearly documented; OR
 d) Diagnostic transformaminal injection to identify the pain generator for surgical planning; AND
 e) Average pain levels of ≥ 6 on a scale of 0 to 10 or intermittent or continuous pain causing functional disability.

II. FREQUENCY OF REPEAT THERAPEUTIC INJECTIONS:
1) Epidural injections may be repeated only as medically necessary. Each epidural injection requires an authorization and the following criteria must be met for repeat injections:

a) Documented proof that the prior injection had a positive response by significantly decreasing the patient’s pain (at least 30% reduction in pain after initial injections or significant documented functional improvement). Or a second injection may be performed at a different spinal level or with a different epidural technique if there is documentation of a question about the pain generator or there is evidence of multilevel pathology; AND

b) No more than 3 procedures in a 12-week period of time per region with at least 14 days between injections in the initial diagnostic phase. At least 50% or more cumulative pain relief obtained for a minimum of 6 weeks after initial injections; AND

c) The patient continues to have ongoing pain or documented functional disability (≥ 6 on a scale of 0 to 10); AND

d) The patient is actively engaged in other forms of active conservative non-operative treatment (unless pain prevents the patient from participating in conservative therapy*); AND

e) Repeat injections after the initial diagnostic phase should be done at intervals of at least 2 months provided that previous injections resulted in at least 50% relief or functional improvement for at least 2 months and are limited to a maximum total of 4 therapeutic procedures per region per 12 months. If special circumstances are documented (e.g. elderly patient with severe spinal stenosis and not an operative candidate) then repeat injections are limited to a maximum of 6 procedures in 12 months.

NOTE: Each epidural injection requires an authorization.

f) If the neural blockade is applied for different regions), injections may be administered at intervals of no sooner than 14 days for most types of procedures.

g) Injecting multiple regions or performing multiple procedures during the same visit may be deemed medically unnecessary unless documentation is provided outlining an unusual situation.

i) No more than 2 levels of transforaminal blocks should be done in one day.

NOTE: An injection of opioid or other substance for the purpose of completing a trial for an implantable infusion pump is approvable.

III. CONTRAINDICATIONS FOR EPIDURAL INJECTIONS

1) Bleeding diathesis and full anticoagulation (risk of epidural hematoma);
2) Severe spinal stenosis resulting in intraspinal obstruction;
3) Local infection at injection site;
4) Predominantly psychogenic pain;
5) Sepsis;
6) Hypovolemia;
7) Uncontrolled diabetes;
8) Uncontrolled glaucoma;
9) High concentrations of local anesthetics in patients with multiple sclerosis;
10) For diagnosis or treatment of facet mediated pain;
11) Known or suspected allergic reaction to steroid medications;
12) Spinal infection; OR
13) Acute fracture.

IV. ADDITIONAL INFORMATION:

1) **Conservative Therapy**: (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

2) **Home Exercise Program** - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with documentation provided regarding completion of HEP, (after suitable 4-6 week period) or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

3) Terminology: Interlaminar Epidural: Selective Nerve Root Injection (transforaminal only); Transforaminal Injection; Injections of Spinal Canal

4) Hip-spine syndrome - Hip-spine syndrome is a condition that includes both debilitating hip osteoarthritis and low back pain. Abnormal spinal sagittal alignment and difficulty in maintaining proper balance, as well as a wobbling gait, may be caused by severe osteoarthritis of the hip joint. Epidural injections are used to determine a primary pain generator in this condition.

5) Spondylolisthesis and nerve root irritation - Degenerative lumbar spondylolisthesis is the displacement of a vertebra in the lower part of the spine: one lumbar vertebra slips forward on another with an intact neural arch and begins to press on nerves. The most common cause, in adults, is degenerative disease although it may also result from bone diseases and fractures. Degenerative spondylolisthesis is not always symptomatic. Epidural injections may be used to determine a previously undocumented nerve root irritation as a result of spondylolisthesis.

6) Lumbar spinal stenosis with radiculitis - Spinal stenosis is narrowing of the spinal column or of the neural foramina where spinal nerves leave the spinal column, causing pressure on the spinal cord. The most common cause is degenerative changes in the lumbar spine. Neurogenic claudication is the most common symptom, referring to “leg symptoms encompassing the buttock, groin and anterior thigh, as well as radiation down the posterior part of the leg to the feet.” In addition to pain, leg symptoms can include fatigue, heaviness, weakness and/or paresthesia. Some patients may also suffer from accompanying back pain. Symptoms are worse when standing or walking and are relieved by sitting. Lumbar spinal stenosis is often a disabling condition, and it is the most common reason for lumbar spinal surgery in adults over 65 years. The most common levels of stenosis are L3 through L5, but it may occur at multilevels in some patients. Radiculitis is the inflammation of a spinal nerve root that causes
pain to radiate along the nerve paths. Epidural injections help to ascertain the level of the pain generator in this condition.

7) Postoperative epidural fibrosis - Epidural fibrosis is a common cause of failed back surgery syndrome. With the removal of a disc, the mechanical reason for pain may be removed, but an inflammatory condition may continue after the surgery and may cause pain. Epidural corticosteroids, with their anti-inflammatory properties, are used to treat postoperative fibrosis and may be used along with oral Gabapentin to reduce pain.

8) Lumbar herniated disc - Epidural steroid injections have been proven to be effective at reducing symptoms of lumbar herniated discs. Evidence shows that they can be successful in 42% to 56% of patients who do not improve after 6 weeks of conservative treatment. Observation and epidural steroid injection are effective nonsurgical treatments for this condition.

9) Failed back surgery syndrome - Failed back surgery syndrome (FBSS) is characterized by persistent or recurring low back pain, with or without sciatica, following lumbar surgery. The most common cause of FBSS is epidural fibrosis which be triggered by a surgical procedure such as discectomy. The inflammation resulting from the surgical procedure may start the process of fibrosis and cause pain. Epidural steroid injections are administered to reduce pain.

V. REFERENCES

CPT Codes:
Cervical Thoracic Region: 64490 (+ 64491, +64492), 0213T, (+0214T, +0215T)
Lumbar Sacral Region: 64493 (+64494, +64495), 0216T, (+0217T, +0218T)

INTRODUCTION:

Facet joints (also called zygapophysial joints or z-joints), posterior to the vertebral bodies in the spinal column and connecting the vertebral bodies to each other, are located at the junction of the inferior articular process of a more cephalad vertebra and the superior articular process of a more caudal vertebra. These joints provide stability and enable movement, allowing the spine to bend, twist, and extend in different directions. They also restrict hyperextension and hyperflexion.

Facet joints are clinically important spinal pain generators in patients with chronic spinal pain. In patients with chronic low back pain, facet joints have been implicated as a cause of the pain in 15% to 45% of patients. Facet joints are considered as the cause of chronic spinal pain in 48% of patients with thoracic pain and 54% to 67% of patients with chronic neck pain. Facet joints may refer pain to adjacent structures, making the underlying diagnosis difficult as referred pain may assume a pseudoradicular pattern. Lumbar facet joints may refer pain to the back, buttocks, and lower extremities while cervical facet joints may refer pain to the head, neck and shoulders.

Imaging findings are of little value in determining the source and location of ‘facet joint syndrome’, a term originally used by Ghormley and referring to back pain caused by pathology at the facet joints. Imaging studies may detect changes in facet joint architecture, but correlation between radiologic findings and symptoms is unreliable. Although clinical signs are also unsuitable for diagnosing facet joint-mediated pain, they may be of value in selecting patients for controlled local anesthetic blocks of either the medial branches or the facet joint itself.

Medical necessity management for paravertebral facet injections includes an initial evaluation including history and physical examination and a psychosocial and functional assessment. The following must be determined: nature of the suspected organic problem; non-responsiveness to conservative treatment*; level of pain and functional disability; conditions which may be contraindications to paravertebral facet injections; and responsiveness to prior interventions.

The most common source of chronic pain is the spine and about two-thirds of the U.S. population suffers from spinal pain sometime during their life span. Facet joint interventions are used in the treatment of pain in certain patients with a confirmed diagnosis of facet joint pain. Interventions include intraarticular injections and medial branch nerve blocks in the lumbar, cervical and thoracic spine. Prior to performing this procedure, shared decision-making between patient and physician must occur, and patient must understand the procedure and its potential risks and results. Facet joint injections or medial branch nerve blocks require guidance imaging.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.
Indications for Facet Joint Injections or Medial Branch Nerve Blocks:

1) To confirm disabling non-radicular low back (lumbosacral), mid back (thoracic) or neck (cervical) pain*, suggestive of facet joint origin as documented in the medical record based upon ALL of the following:

a) history, consisting of mainly axial or non-radicular pain; AND

b) lack of evidence, either for discogenic or sacroiliac joint pain; AND

c) lack of disc herniation or evidence of radiculitis; AND

d) facet blocks should not be performed at same levels as previous surgical fusion; AND

e) intermittent or continuous pain with average pain levels of ≥ 6 on a scale of 0 to 10 or functional disability prior to each injection, including each unilateral facet block; AND

f) Duration of pain of at least 2 months; AND

g) Failure to respond to conservative non-operative therapy management* for a minimum of 6 weeks in the last 6 months prior to facet injections or details of active engagement in other forms of active conservative non-operative treatment if the patient had prior spinal injections unless the medical reason this treatment cannot be done is clearly documented.

h) All procedures must be performed using fluoroscopic or CT guidance.

NOTE: Ultrasound guidance is not a covered benefit and procedure performed using ultrasound guidance are not reimbursable.

II. FREQUENCY OF FACET BLOCK:

1) There must be a minimum of 14 days between injections.

2) There must be a positive response of ≥ 50% pain relief or improved ability to function or a change in technique from an initial intraarticular facet block to a facet joint nerve block can be considered. Repeat therapeutic injections should be performed at a frequency of 2 months or longer provided that at least 50% relief is obtained for a minimum of 2 months after the previous injection. The patient is actively engaged in other forms of active conservative non-operative treatment if the patient is receiving therapeutic facet joint injections unless pain prevents the patient from participating in conservative therapy*).

3) Maximum of 4 procedures per region every 12 months except under unusual circumstances such as a recurrent injury. (NOTE: Unilateral facet blocks performed at the same level on the right vs. left within 2 weeks of each other would be considered as one procedure.)

4) If the procedures are applied for different regions, they may be performed at intervals of no sooner than 2 weeks for most types of procedures.

5) Maximum of 3 levels injected on same date of service.

6) Radiofrequency neurolysis procedures should be considered in patients with positive facet blocks (with at least 70% pain relief and/or improved ability to function, but with insufficient sustained relief (less than 2-3 months improvement).

III. CONTRAINDICATIONS FOR FACET JOINT INJECTIONS:
1) History of allergy to contrast administration, local anesthetics, steroids, or other drugs potentially utilized;
2) Hypovolemia;
3) Infection over puncture site;
4) Bleeding disorders or coagulopathy;
5) History of allergy to medications to be administered;
6) Inability to obtain percutaneous access to the target facet joint;
7) Progressive neurological disorder which may be masked by the procedure;
8) Pregnancy;
9) Spinal infection; OR
10) Acute fracture

IV. ADDITIONAL INFORMATION:

1) *Conservative Therapy: (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

2) **Home Exercise Program – (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with documentation provided regarding completion of HEP, (after suitable 4-6 week period) or inability to complete HEP due to physical reason: i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

3) Terminology: Facet Injections; Facet Joint Blocks; Paravertebral Facet Injections; Paravertebral Facet Joint Nerve Injections; Zygapophyseal injections; Lumbar Facet Blockade; Medial Branch blocks.

V. REFERENCES

CPT Codes:
Cervical Thoracic Region: 64633, +64634
Lumbar Sacral Region: 64635, +64636

INTRODUCTION:

Facet joints (also called zygapophysial joints or z-joints), posterior to the vertebral bodies in the spinal column and connecting the vertebral bodies to each other, are located at the junction of the inferior articular process of a more cephalad vertebra and the superior articular process of a more caudal vertebra. These joints provide stability and enable movement, allowing the spine to bend, twist, and extend in different directions. They also restrict hyperextension and hyperflexion.

Facet joints are clinically important spinal pain generators in patients with chronic spinal pain. Pain mediated by the facet joints may be caused by repetitive stress and/or cumulative low-level trauma resulting in osteoarthritis and inflammation. In patients with chronic low back pain, facet joints have been implicated as a cause of the pain in 15% to 45% of patients. They are considered as the cause of chronic spinal pain in 48% of patients with thoracic pain and 54% to 67% of patients with chronic neck pain. Facet joints may refer pain to adjacent structures, making the underlying diagnosis difficult as referred pain may assume a pseudoradicular pattern. Lumbar facet joints may refer pain to the back, buttocks, and proximal lower extremities while cervical facet joints may refer pain to the head, neck and shoulders.

Imaging findings are of little value in determining the source and location of ‘facet joint syndrome’, a term originally used by Ghormley and referring to back pain caused by pathology at the facet joints. Imaging studies may detect changes in facet joint architecture, but correlation between radiologic findings and symptoms is unreliable. Although clinical signs are also unsuitable for diagnosing facet joint-mediated pain, they may be of value in selecting patients for controlled local anesthetic blocks of either the medial branches or the facet joint itself. This is an established tool in diagnosing facet joint syndrome.

Facet joints are known to be a source of pain with definitive innervations. Interventions used in the treatment of patients with a confirmed diagnosis of facet joint pain include: medial branch nerve blocks in the lumbar, cervical and thoracic spine; and radiofrequency neurolysis (see additional terminology). The medial branch of the primary dorsal rami of the spinal nerves has been shown to be the primary innervations of facet joints. Substance P, a physiologically potent neuropeptide considered to play a role in the nociceptive transmission of nerve impulses, is found in the nerves within the facet joint.

Radiofrequency neurolysis is a minimally invasive treatment for cervical, thoracic and lumbar facet joint pain. It involves using energy in the radiofrequency range to cause necrosis of specific nerves (medial branches of the dorsal rami), preventing the neural transmission of pain. The objective of radiofrequency neurolysis is to both provide relief of pain and reduce the likelihood of recurrence. Used most often for facet joint pain, radiofrequency neurolysis is recently emerging for sacroiliac joint pain. However, it has been shown to have limited evidence in treating sacroiliac joint pain and is considered investigational and not medically necessary.

Members of the American Society of Anesthesiologists (ASA) and the American Society of Regional Anesthesia and Pain Medicine (ASRA) have agreed that conventional or thermal radiofrequency ablation of the medial branch nerves to the facet joint should be performed for neck or low back pain. Radiofrequency neurolysis has been employed for over 30 years to treat facet joint pain. Prior to performing this procedure,
shared decision-making between patient and physician must occur, and patient must understand the procedure and its potential risks and results.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

I. INDICATIONS FOR THERAPEUTIC PARAVERTEBRAL FACET JOINT DENERVATION (RADIOFREQUENCY NEUROLYSIS) (local anesthetic block followed by the passage of radiofrequency current to generate heat and coagulate the target medial branch nerve)

1) Positive response to one or two controlled local anesthetic blocks of the facet joint, with at least 70% pain relief and/or improved ability to function for a minimal duration at least equal to that of the local anesthetic, but with insufficient sustained relief (less than 2-3 months relief) and a failure to respond to more active conservative non-operative management for a minimum of 6 weeks in the last 6 months unless the medical reason this treatment cannot be done is clearly documented: OR

2) Positive response to prior radiofrequency neurolysis procedures with at least 50% pain relief and/or improved ability to function for at least 6 months, and the patient is actively engaged in other forms of appropriate active conservative non-operative treatment (unless pain prevents the patient from participating in conservative therapy*): AND

3) The presence of ALL of the following:
 a) Lack of evidence that the primary source of pain being treated is from discogenic pain, sacroiliac joint pain, disc herniation or radiculitis;
 b) Intermittent or continuous facet-mediated pain [average pain levels of ≥ 6 on a scale of 0 to 10] causing functional disability prior to each radiofrequency procedure including radiofrequency procedures done unilaterally on different days;
 c) Duration of pain of at least 3 months.
 d) Maximum of 3 spinal levels performed on same date of service.

II. FREQUENCY:

1) Relief typically lasts between 6 and 12 months and sometimes provides relief for greater than 2 years.

2) Limit to 2 facet neurolysis procedures every 12 months, per region (cervical, thoracic and lumbar are each considered one region). NOTE: Unilateral radiofrequency denervations performed at the same level on the right vs left within 2 weeks of each other would be considered as one procedure.

III. CONTRAINDICATIONS FOR PARAVERTEBRAL FACET JOINT DENERVATION (RADIOFREQUENCY NEUROLYSIS):

1) History of allergy to local anesthetics or other drugs potentially utilized;

2) Lumbosacral radicular pain (dorsal root ganglion);

3) Conditions/diagnosis for which procedure is used are other than those listed in Indications;

4) Absence of positive diagnostic blocks: OR

5) For any nerve other than the medial branch nerve.

IV. ADDITIONAL INFORMATION:
1) **Conservative Therapy**: (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

2) **Home Exercise Program** - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with documentation provided regarding completion of HEP, (after suitable 4-6 week period) or inability to complete HEP due to physical reason i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

3) **Terminology**: Paravertebral Facet Joint Denervation, Radiofrequency Neurolysis, Destruction Paravertebral Facet Joint Nerve, Facet Joint Rhizotomy, Facet Neurolysis, Medial Branch Radiofrequency Neurolysis, Medial Branch Radiofrequency Neurotomy or Radiofrequency Denervation.

V. **REFERENCES**

CPT Codes: 27096

INTRODUCTION

This guideline addresses the use of sacroiliac joint injections for the treatment of low back pain that originates in the region of the sacroiliac joint. An injection of anesthetic and/or steroid may be used for the diagnosis and treatment of sacroiliac joint (SIJ) pain syndrome disorders (such as degenerative joint disease, postsurgical injuries, or traumatic injuries), or for treatment of spondyloarthropathy (inflammatory disorders of the joints and ligaments of the spine).

Sacroiliac joint injections are typically used for the following conditions:

- **Sacroiliac joint pain syndrome** may be caused by various events, including pain secondary to postsurgical or traumatic injury, degeneration (wear and tear), or pregnancy. Physical examination (history and physical, provocative maneuvers) and diagnostic injection help to identify the source of pain as the SIJ.

- **Diagnostic SIJ injections** are used to determine if the SIJ pain originates with the SIJ. Diagnostic blocks can reveal (or fail to reveal) that the source of pain is originating from the SIJ, and then an appropriate treatment plan can be developed (Curatolo and Bogduk, 2010; Manchikanti et al., 2013a).

- **Therapeutic SIJ injections** may be used to treat SIJ pain once it has been determined that the SIJ is the origin of the pain. A therapeutic injection typically includes a corticosteroid and a local anesthetic that can be injected directly into the joint (intra-articular) or into the tissues surrounding the joint (periarticular).

- **Spondyloarthropathy** (also known as spondyloarthritis) is the name for a family of rheumatic diseases that cause arthritis. Sacroiliitis is a key indicator of spondyloarthritis and is diagnosed with imaging. Patients with spondyloarthropathy are generally managed by rheumatologists and account for only a small percentage of the cases that present in interventional pain management settings.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

I. INDICATIONS FOR SACROILIAC JOINT INJECTIONS (SIJ)

1) For the treatment of SIJ pain:
 - All of the following must be met:
 a) Low back pain maximal below level of L5 which may radiate to the groin or lower extremity persisting at least 3 months: AND
 b) Positive exam findings to suggest the diagnosis which may include the pelvic distraction test, pelvic compression test, thigh thrust test, FABER (Patrick’s test) or Gaenslen’s test: AND
 c) Active conservative treatment for a minimum of 6 weeks in the last 6 months (including physical therapy, home exercise, patient education, psychosocial support, and/or medication) has failed unless the medical reason this conservative treatment cannot be done is clearly documented: AND
d) Average pain levels of ≥ 6 on a scale of 0 to 10 or intermittent or continuous pain causing functional disability

2) **For the treatment of spondyloarthropathy**

 All of the following must be met:
 a) The patient has experienced ≥ 3 months of low back pain: AND
 b) Age of onset < 45 years: AND
 c) Comprehensive pain management program including physical therapy, home exercise, patient education, psychosocial support and/or oral medication is in place: AND
 d) Prior history of evidence of sacroiliitis on imaging (i.e., active inflammation on magnetic resonance imaging [MRI] or definite radiographic sacroiliitis grade > 2 bilaterally or grade 3-4 unilaterally): AND
 e) **1 or more** spondyloarthropathy features:
 a. Inflammatory back pain with at least 4 of the following criteria present:
 (1) Age at onset < 45 years
 (2) Insidious onset
 (3) Improvement with exercise
 (4) No improvement with rest
 (5) Pain at night (with improvement upon getting up)
 f) Arthritis
 g) Enthesitis of the heel (irritability of muscles, tendons, or ligaments where they enter the bone)
 h) Uveitis (inflammation of the uvea, the middle layer of the eye)
 i) Dactylitis (inflammation of a finger or toe)
 j) Psoriasis
 k) Crohn's/colitis
 l) Good response to NSAIDs
 m) Family history of spondyloarthropathy
 n) Positive testing for HLA-B27
 o) Elevated C-reactive protein (CRP)

II. **FREQUENCY OF REPEAT THERAPEUTIC INJECTIONS**

1) SIJ injections may be repeated up to 2 times in the initial treatment phase no sooner than 2 weeks apart provided that at least 50% relief is obtained: AND

2) SIJ injections may only be repeated after the initial treatment phase if symptoms recur and the patient has had at least a 50% improvement for a minimum of 6 weeks after each therapeutic injection: AND
3) The injections are performed as one part of a comprehensive treatment program, which will nearly always include an exercise program to improve or maintain spinal mobility; AND
4) Repeat injections should not be done more frequently than every two months for a total of 4 injections in a 12 month period.

III. CONTRAINDICATIONS FOR SACROILIAC JOINT INJECTIONS
1) Active systemic infection
2) Skin infection at the site of needle puncture
3) Bleeding disorder or anticoagulation therapy
4) Uncontrolled high blood pressure
5) Uncontrolled diabetes
6) Unstable angina
7) Congestive heart failure
8) Allergies to contrast, anesthetics, or steroids (AAOS, 2009)

IV. ADDITIONAL INFORMATION
1) Conservative Therapy: (Musculoskeletal) includes a combination of modalities, such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, diathermy, chiropractic treatments, or physician supervised home exercise program. Part of this combination may include the physician instructing patient to rest the area or stay off the injured part.
2) Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with information provided regarding completion of HEP (after suitable 4-6 week period), or inability to complete HEP due to physical reason – i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

Low back pain is one of the most common of all spinal pain problems. According to the Centers for Disease Control and Prevention (CDC), the prevalence of low back pain in adults 18 years of age and older is 28.4% and may range as high as 32.1% in adults ≥ 75 years (CDC, 2012). Symptoms of low back pain may arise from multiple sites, including lumbar intervertebral discs, facet joints, sacroiliac joints, ligaments, fascia, muscles, and nerve root dura. The sacroiliac joint has been shown to be a source of pain in 10% to 27% of chronic low back pain (Hansen et al., 2007; Simopoulos et al., 2012; Manchikanti et al., 2013a).

The sacroiliac joint (SIJ) is located between the sacrum (located at the base of the spine) and the pelvis, and supports the weight of the upper body in the standing position. There are SIJs in both the right and left side of the lower back. Strong ligaments hold the joints in place. The SIJ is well innervated and has been shown to be capable of being a source of low back pain and referred pain in the lower extremity. Low back pain originating from the SIJ can result from inflammatory
conditions such as sacroiliitis, spondyloarthropathy (ankylosing spondylitis; rheumatoid spondylitis), or from postsurgical or traumatic injury, degeneration (wear and tear), or pregnancy. SIJ pain most often occurs in the buttocks and lower back, and may radiate down through the buttocks and the leg. Physical examination and radiographic techniques may confirm a diagnosis related to spondyloarthropathy. Physical examination, including provocative maneuvers to elicit pain response, and controlled SIJ injections can help diagnose noninflammatory pain arising from the SIJ (Hansen et al., 2007; Medline Plus, 2012: Mayo Clinic, 2013).

In order to confirm correct placement of the injectable medication into the intra-articular space, fluoroscopic or computed tomography (CT) guidance is used. A periartricular injection into the soft tissue may be used if ligamentous or muscular attachments are suspected to be involved. The goal of the therapeutic injection is to reduce inflammation and/or pain and provide longer pain relief. Long-term relief is generally defined as 6 weeks or longer, but positive responders generally have a much longer duration of response; serial injections may be required in order to maintain therapeutic effectiveness (Hansen et al., 2007; AAOS, 2009: Luukkainen et al., 2002: Hawkins and Schofferman, 2009).

Spinal injections for the treatment of SIJ pain syndrome are typically performed as one part of a comprehensive treatment program, which will nearly always include an exercise program to improve or maintain spinal mobility. Potential candidates for SIJ injections include those with low back pain originating from the SIJ that is unresponsive to conservative treatments.

Treatment for SIJ pain depends upon the signs and symptoms, as well as the underlying cause for the pain. Medications, such as over-the-counter analgesics, a short course of narcotics, muscle relaxants or tumor necrosis factor (TNF) inhibitors, such as etanercept (Enbrel), adalimumab (Humira), or infliximab (Remicade), may be prescribed. Therapy sessions with a physical therapist involving range-of-motion, stretching, and strengthening exercises may be used to maintain joint flexibility and strengthen the muscles. Other interventional procedures used to treat SIJ pain include corticosteroid injections to reduce inflammation and pain, radiofrequency denervation, electrical stimulation, or in rare cases, joint fusion (Mayo Clinic, 2013).

The indications for coverage for the treatment of spondyloarthropathy have been established through use of the reviewed clinical studies and through criteria developed by the Assessment of SpondyloArthritis International Society (ASAS) for the classification of axial spondyloarthritis (Sieper et al., 2009). They are in keeping with the benefit guidelines developed by the Centers for Medicare & Medicaid Services (CMS).

While evidence supports that SIJ injection is an effective method of determining the source of pain, evidence supporting the efficacy of SIJ in the treatment of SIJ pain syndrome is considerably limited. There are limited controlled or prospective clinical studies to support SIJ injection for therapeutic purposes. Despite the limited quality of the clinical studies supporting SIJ injection for the treatment of SIJ pain, the procedure is recommended by the American Society of Anesthesiologists (ASA) and the American Society of Regional Anesthesia and Pain Management (ASRPM) Practice Guidelines. The indications for coverage have been established from the 2009 Comprehensive Evidence-Based Guidelines for Interventional Techniques in the Management of Chronic Spinal Pain, and updated with the 2013 An Update of Comprehensive Evidence-Based Guidelines for Interventional Techniques in Chronic Spinal Pain. Part II: Guidance and Recommendations.
V. REFERENCES

TOC