2017 NIA Clinical Guidelines for Medical Necessity Review

MUSCULOSKELETAL AND SURGERY GUIDELINES
Guidelines for Clinical Review Determination

Preamble

NIA is committed to the philosophy of supporting safe and effective treatment for patients. The medical necessity criteria that follow are guidelines for the provision of diagnostic imaging. These criteria are designed to guide both providers and reviewers to the most appropriate diagnostic tests based on a patient’s unique circumstances. In all cases, clinical judgment consistent with the standards of good medical practice will be used when applying the guidelines. Guideline determinations are made based on the information provided at the time of the request. It is expected that medical necessity decisions may change as new information is provided or based on unique aspects of the patient’s condition. The treating clinician has final authority and responsibility for treatment decisions regarding the care of the patient.

Guideline Development Process

These medical necessity criteria were developed by NIA for the purpose of making clinical review determinations for requests for diagnostic tests. The developers of the criteria sets included representatives from the disciplines of radiology, internal medicine, nursing, and cardiology. They were developed following a literature search pertaining to established clinical guidelines and accepted diagnostic imaging practices.

All inquiries should be directed to:
National Imaging Associates, Inc.
6950 Columbia Gateway Drive
Columbia, MD 21046
Attn: NIA Associate Chief Medical Officer
TABLE OF CONTENTS

MUSCULOSKELETAL & SURGERY GUIDELINES

- 22600/63001 – Cervical Spinal Surgery .. 4
- 22612/63030 – Lumbar Spinal Surgery .. 20
- 62310-62311 – Spinal Epidural Injections 31
- 64490-64493 – Paravertebral Facet Joint Injections/Blocks 38
- 64633-64635 – Paravertebral Facet Joint Neurolysis 43
- 27096 – Sacroiliac Joint Injections ... 47
- 27132 – Hip Arthroplasty ... 55
- 27130 – Hip Arthroscopy ... 64
- 27446 – Knee Arthroplasty ... 71
- 27332 – Knee Arthroscopy ... 79
- 23474 – Shoulder Arthroplasty .. 96
- 23415 – Shoulder Arthroscopy .. 104
- 22532 – Thoracic Spine Surgery ... 121
CPT Codes:
Anterior Cervical Decompression with Fusion - Single Level** (ACDF) 22548, 22551, 22554
Anterior Cervical Decompression with Fusion - Multiple Level** (ACDF) 22548, 22551, 22554, +22552, +22585
Cervical Posterior Decompression with Fusion - Multiple Levels** 22590, 22595, 22600, +22614
Cervical Posterior Decompression with Fusion - Single Level** 22590, 22595, 22600
Cervical Artificial Disc – Single Level 22856, 22861, 22864
Cervical Artificial Disc – Two Levels (**0375T is not a covered service and is not reimbursable) 22858, 0098T, 0095T
Cervical Posterior Decompression (without fusion) 63001, 63015, 63020, 63040, 63045, 63050, 63051, +63035, +63043, +63048,
Cervical Anterior Decompression (without fusion) 63075, +63076

OVERVIEW:
This guideline outlines the key surgical treatments and indications for common cervical spinal disorders and is a consensus document based upon the best available evidence. Spine surgery is a complex area of medicine, and this document breaks out the clinical indications by surgical type. Operative treatment is indicated only when the natural history of an operatively treatable problem is better than the natural history of the problem without operative treatment. Choice of surgical approach is based on anatomy, the patient's pathology, and the surgeon's experience and preference. All operative interventions must be based on a positive correlation with clinical findings, the natural history of the disease, the clinical course, and diagnostic tests or imaging results.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR CERVICAL SPINE SURGERY:
A. Anterior Cervical Decompression with Fusion (ACDF) - Single Level
 1) Anterior cervical discectomy and fusion with either a bone bank allograft or autograft with or without plating is the standard approach anteriorly and is most commonly used for disc herniation. The following criteria must be met*:
a) Positive clinical findings of myelopathy with evidence of progressive neurologic
deficits consistent with **spinal cord compression** - immediate surgical evaluation is
indicated. Symptoms may include:
 i) upper extremity weakness
 ii) unsteady gait related to myelopathy/balance or generalized lower extremity
 weakness
 iii) disturbance with coordination
 iv) hyperreflexia
 v) Hoffmann sign
 vi) positive Babinski sign and/or clonus

OR

b) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with
evidence of spinal cord or nerve root compression on Magnetic Resonance Imaging
(MRI) or Computed Tomography (CT) imaging - immediate surgical evaluation is
indicated.

OR

c) **When All of the following criteria are met:**
 i) **Cervical radiculopathy** or myelopathy from ruptured disc, spondylosis, spinal
 instability, or deformity: **AND**
 ii) Persistent or recurrent symptoms/pain with functional limitations that are
 unresponsive to at least **6 weeks of appropriate conservative treatment**. Documented
 failure of at least 6 consecutive weeks of **any 2** of the following
 physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist,
 chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block:
 AND

d) **Imaging studies** confirm the presence of spinal cord or spinal nerve root compression
 (disc herniation or foraminal stenosis) at the level **corresponding with the clinical
 findings**. Imaging studies may include:
 i) MRI (preferred study for assessing cervical spine soft tissue): **OR**
 ii) CT with or without myelography— indicated in patients in whom MRI is
 contraindicated; preferred for examining bony structures, or in patients
 presenting with clinical symptoms or signs inconsistent with MRI findings (e.g.,
 foraminal compression not seen on MRI).
2) **Cervical spine decompression with fusion as first-line treatment without conservative care measures** in the following clinical cases:
 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.
 c) Fracture or instability on radiographic films measuring:
 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction **OR**
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

3) **Not Recommended:**
 a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.
 b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria

B. **Anterior Cervical Decompression with Fusion (ACDF) - Multiple Level**

1) Anterior cervical discectomy and fusion with either a bone bank allograft or autograft with or without plating is the standard approach anteriorly and is most **commonly used for disc herniation.** The following criteria must be met**:
 a) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression** - immediate surgical evaluation is indicated. Symptoms may include:
 i) upper extremity weakness
 ii) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 iii) disturbance with coordination
 iv) hyperreflexia
 v) Hoffmann sign
 vi) positive Babinski sign and or clonus
 OR
 b) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.
 OR
 c) **When ALL** of the following criteria are met:
i) Cervical radiculopathy or myelopathy due to ruptured disc, spondylosis, spinal instability, or deformity: **AND**

ii) Persistent or recurrent pain/symptoms with functional limitations that are unresponsive to **at least 6 weeks** of conservative treatment. Documented failure of at least 6 consecutive weeks of **any 2** of the following physician-directed conservative treatments:

 1. Analgesics, steroids, and/or NSAIDs
 2. Structured program of physical therapy
 3. Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 4. Epidural steroid injections and or facet injections /selective nerve root block: **AND**

 d) Imaging studies confirm the presence of spinal cord or spinal nerve root compression (disc herniation or foraminal stenosis) **at multiple levels corresponding with the clinical findings**. Imaging studies may include any of the following:

 i) MRI (preferred study for assessing cervical spine soft tissue); OR
 ii) CT with or without myelography - indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI)

2) **Cervical spine decompression with fusion performed as first-line treatment without conservative care measures in the following clinical cases:**

 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.
 c) Fracture or instability on radiographic films measuring:

 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction; OR
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

3) **Not Recommended:**

 a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.
 b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. **See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria.**

C. **Cervical Posterior Decompression with Fusion - Single Level**

Surgical indications for cervical spine stenosis/cervical spondylotic myelopathy (CSM) must meet the following criteria*:

specific criteria details
1) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression** - immediate surgical evaluation is indicated. Symptoms may include:
 a) upper extremity weakness
 b) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 c) disturbance with coordination
 d) hyperreflexia
 e) Hoffmann sign
 f) positive Babinski sign and / or clonus

OR

2) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.

OR

3) **When ALL of the following criteria are met:**
 a) Cervical radiculopathy or myelopathy from ruptured disc, spondylosis, spinal instability, or deformity; **AND**
 b) Persistent or recurrent symptoms/pain with functional limitations that is unresponsive to at least 6 weeks of conservative treatment; AND Documented failure of at least 6 consecutive weeks of **any 2** of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block; **AND**
 c) Imaging studies confirm the presence of spinal cord or spinal nerve root compression (disc herniation or foraminal stenosis) at single level corresponding with the clinical findings. Imaging studies may include:
 i) MRI (preferred study for assessing cervical spine soft tissue); OR
 ii) CT with or without myelography - indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI); AND
 d) Single level **symptomatic cervical** disease as evidence by:
 i) cervical spinal stenosis due to cervical spondylotic myelopathy (CSM); or
ii) cervical spinal stenosis due to ossification of the posterior longitudinal ligament (OPLL); or

iii) single level spinal cord or nerve root compression due to herniated disc.

4) Cervical spine decompression with fusion performed as first-line treatment without conservative care measures in the following clinical cases:

 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.
 c) Fracture or instability on radiographic films measuring:
 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction; OR
 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

5) Not Recommended:

 a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.
 b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria.
 c) In patients with kyphosis or at risk for development of postoperative kyphosis.

D. Cervical Posterior Decompression with Fusion - Multiple Levels

1) Surgical indications for cervical spine stenosis/cervical spondylotic myelopathy (CSM) must meet the following criteria*:

 a) Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening spinal cord compression - immediate surgical evaluation is indicated. Symptoms may include:
 i) upper extremity weakness
 ii) unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 iii) disturbance with coordination
 iv) hyperreflexia
 v) Hoffmann sign
 vi) positive Babinski sign and / or clonus

 OR

 b) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.
OR

c) **When ALL of the following criteria are met:**
 i) Cervical radiculopathy or myelopathy from ruptured disc, spondylosis, spinal instability, or deformity: **AND**

 ii) Persistent or recurrent symptoms/pain with functional limitations that is unresponsive to at least 6 weeks of conservative treatment: **AND** Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 1) Analgesics, steroids, and/or NSAIDs
 2) Structured program of physical therapy
 3) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 4) Epidural steroid injections and or facet injections /selective nerve root block: **AND**

d) Imaging studies indicate significant spinal cord or spinal nerve root compression at multiple levels corresponding with the clinical findings. Imaging studies may include:
 i) MRI (preferred study for assessing cervical spine soft tissue); **OR**

 ii) CT with or without myelography - indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI): **AND**

e) Multilevel (>=2) symptomatic cervical disease as evidence by:
 i) Cervical spinal stenosis due to cervical spondylotic myelopathy (CSM): **or**

 ii) Cervical spinal stenosis due to ossification of the posterior longitudinal ligament (OPLL): **or**

 iii) Evidence of significant spinal cord or nerve root compression from herniated discs at two or more levels.

2) **Cervical spine decompression with fusion performed as first-line treatment without conservative care measures in the following clinical cases:**
 a) As outlined above for myelopathy or progressive neurological deficit scenarios.

 b) Significant spinal cord or nerve root compression due to tumor, infection or trauma.

 c) Fracture or instability on radiographic films measuring:
 i) Sagittal plan angulation of greater than 11 degrees at a single interspace greater than 3.5mm anterior subluxation in association with radicular/cord dysfunction: **OR**

 ii) Subluxation at the (C1) level of the atlantodental interval of more than 3 mm in an adult and 5 mm in a child.

3) **Not Recommended:**
a) In asymptomatic or mildly symptomatic cases of cervical spinal stenosis.

b) In cases of neck pain alone, without neurological deficits, and no evidence of significant spinal nerve root or cord compression on MRI or CT. *See V. Cervical Fusion for Treatment of Axial Neck Pain Criteria.*

c) In patients with kyphosis or at risk for development of postoperative kyphosis.

Cervical Fusion for Treatment of Axial Neck Pain:
In patients with non-radicular cervical pain for whom fusion is being considered, **ALL of the following criteria must be met:**

1) Improvement of the symptoms has failed or plateaued, and the residual symptoms of pain and functional disability are unacceptable at the end of 6 to 12 consecutive months of appropriate, active treatment, or at the end of longer duration of non-operative programs for debilitated patients with complex problems [NOTE: Mere passage of time with poorly guided treatment is not considered an active treatment program]; **AND**

2) All pain generators are adequately defined and treated: **AND**

3) All physical medicine and manual therapy interventions are completed: **AND**

4) X-ray, MRI, or CT demonstrating disc pathology or spinal instability; **AND**

5) Spine pathology limited to one or two levels unless other complicating factors are involved: **AND**

6) Psychosocial evaluation for confounding issues addressed.

NOTE: The effectiveness of three-level or greater cervical fusion for non-radicular pain has not been established.

VI. Cervical Posterior Decompression

1) Surgical indications for cervical nerve root decompression due to radiculopathy, disc herniation or foraminal stenosis. A posterior laminotomy and discectomy is occasionally used for patients with specific lateral disc herniations when the surgeon’s preference is that the individual would respond better with a posterior approach than an anterior one.

The following criteria must be met:

Positive clinical findings of myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression** - immediate surgical evaluation is indicated. Symptoms may include:

a) upper extremity weakness

b) unsteady gait related to myelopathy/balance or generalized lower extremity weakness

c) disturbance with coordination

d) hyperreflexia

e) Hoffmann sign

f) positive Babinski sign and / or clonus
OR

2) Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images - immediate surgical evaluation is indicated.

3) When ALL of the following criteria are met:
 a) Cervical radiculopathy from ruptured disc, spondylosis, or deformity; AND
 b) Persistent or recurrent symptoms/pain with functional limitations that is unresponsive to at least 6 weeks of appropriate conservative treatment; AND
 Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections/selective nerve root block; AND
 c) Imaging studies confirm the presence of spinal cord or spinal nerve root compression at the level(s) corresponding with the clinical findings. Imaging studies may include any of the following:
 i) MRI (preferred study for assessing cervical spine soft tissue): OR
 ii) CT with or without myelography— indicated in patients in whom MRI is contraindicated; preferred for examining bony structures, or in patients presenting with clinical symptoms or signs inconsistent with MRI findings (e.g., foraminal compression not seen on MRI);

4) Cervical decompression performed as first-line treatment without conservative care in the following clinical cases:
 a) As outlined above for myelopathy or progressive neurological deficit scenarios.
 b) Spinal cord or nerve root compression due to tumor, infection or trauma.

5) Not Recommended:
 a) In asymptomatic or mildly symptomatic cases.
 b) In cases of pain alone, without neurological deficits and abnormal imaging findings. See E. Cervical Fusion for Treatment of Axial Neck Pain Criteria.

VII. Cervical Artificial Disc Replacement (Single or Two Level)
This involves the insertion of a prosthetic device into the cervical intervertebral space with the goal of maintaining physiologic motion at the treated cervical segment. The use of artificial discs
in motion-preserving technology is based on the surgeon's preference and training. Only FDA-approved artificial discs are appropriate.

1) Indications for artificial cervical disc replacement are as follows:
 a) Skeletally mature patient: **AND**
 b) Patient has intractable radiculopathy caused by one or two level disease (either herniated disc or spondolytic osteophyte) located at C3-C7; **AND**
 c) Persistent or recurrent symptoms/pain with functional limitations that are unresponsive to at least 6 weeks of appropriate conservative treatment. Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block: **AND**
 d) Imaging studies confirm the presence of compression at the level(s) corresponding with the clinical findings (MRI or CT); **AND**
 e) No prior neck surgery: **AND**
 f) Use of an FDA-approved prosthetic intervertebral discs

2) Cervical Artificial Disc Replacement is NOT indicated when any of the following clinical scenarios exists:
 a) Symptomatic multiple level disease affecting 3 or more levels
 b) Adjacent level disease: degenerative disease adjacent to a previous cervical fusion
 c) Infection (at site of implantation or systemic)
 d) Osteoporosis or osteopenia
 e) Instability
 i) Translation greater than 3mm difference between lateral flexion-extension views at the symptomatic levels:
 ii) 11 degrees of angular difference between lateral flexion-extension views at the symptomatic levels
 f) Sensitivity or allergy to implant materials
 g) Severe spondylosis defined as:
 i) > 50% disc height loss compared to minimally or non-degenerated levels: OR
 ii) Bridging osteophytes: OR
 iii) Absence of motion on lateral flexion-extension views at the symptomatic site
h) Severe facet arthropathy
i) Ankylosing spondylitis
j) Rheumatoid arthritis
k) Previous fracture with anatomical deformity
l) Ossification of the posterior longitudinal ligament (OPLL)
m) Active cervical spine malignancy

VIII. Cervical Fusion without Decompression

1) Cervical fusion without decompression will be reviewed on a case-by-case basis. Atraumatic instability due to Down Syndrome-related spinal deformity, rheumatoid arthritis, or basilar invagination are uncommon, but may require cervical fusion.

IX. Cervical Anterior Decompression (without fusion)

2) All requests for anterior decompression without fusion will be reviewed on a case-by-case basis.

X. ADDITIONAL INFORMATION:

1) CPT Codes:
 a) Anterior Cervical Decompression with Fusion - Single Level** (ACDF) 22548, 22551, 22554
 b) Anterior Cervical Decompression with Fusion - Multiple Level** (ACDF) 22548, 22551, 22554, +22552, +22585
 c) Cervical Posterior Decompression with Fusion - Multiple Levels** 22590, 22595, 22600, +22614
 d) Cervical Posterior Decompression with Fusion - Single Level** 22590, 22595, 22600
 e) Cervical Artificial Disc – Single Level 22856, 22861, 22864
 f) Cervical Artificial Disc – Two Levels (**0375T is not a covered service and is not reimbursable) 22858, 0098T, 0095T
 g) Cervical Posterior Decompression (without fusion) 63001, 63015, 63020, 63040, 63045, 63050, 63051, +63035, +63043, +63048,
 h) Cervical Anterior Decompression (without fusion) 63075, +63076

2) *Conservative Therapy:* (Musculoskeletal) includes primarily physical therapy and/or injections; and a combination of modalities, such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, diathermy, chiropractic treatments, or physician supervised home exercise program. Part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

3) **Home Exercise Program** - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
a) Information provided on exercise prescription/plan AND
b) Follow up with member with documentation provided regarding completion of HEP, (after 4 – 6 week period) or inability to complete HEP due to physical reason- i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

4) A comprehensive assimilation of factors should lead to a specific diagnosis with positive identification of the pathologic condition(s).
 a) Early intervention may be required in acute incapacitating pain or in the presence of progressive neurological deficits.
 b) Operative treatment is indicated when the natural history of surgically treated lesions is better than the natural history for non-operatively treated lesions.
 c) Patients may present with localized pain or severe pain in combination with numbness, extremity weakness, loss of coordination, gait issues, or bowel and bladder complaints. Nonoperative treatment continues to play an important role in the care of patients with degenerative cervical spine disorders. If these symptoms progress to neurological deficits, from corresponding spinal cord or nerve root compression, than surgical intervention may be warranted.
 d) All patients being considered for surgical intervention should first undergo a comprehensive neuromusculoskeletal examination to identify those pain generators that may either respond to non-surgical techniques, or may be refractory to surgical intervention.
 e) If operative intervention is being considered, particularly those procedures that require a fusion, it is recommended that the person refrain from smoking for at least six weeks prior to surgery and during the time of healing.
 f) In situations requiring the possible need for operation, a second opinion may be necessary. Psychological evaluation is strongly encouraged when surgery is being performed for isolated axial pain to determine if the patient will likely benefit from the treatment.
 g) It is imperative for the clinician to rule out non-physiologic modifiers of pain presentation, or non-operative conditions mimicking radiculopathy, myelopathy or spinal instability (peripheral compressive neuropathy, chronic soft tissue injuries, and psychological conditions), prior to consideration of elective surgical intervention.

5) Degenerative cervical spine disorders, while often benign and episodic in nature, can become debilitating, resulting in axial pain and neurological damage to the spinal cord or roots. Compression on the nerve root and/or spinal cord may be caused by (1) a herniated disc with or without extrusion of disc fragments and/or (2) degenerative cervical spondylosis.

XI. Anterior Approaches – Additional Information:
 1) Anterior surgical approaches to cervical spine decompression emerged in the 1950s in response to technical limitations experienced with posterior approaches, including restricted access to and exposure of midline bony spurs and disc fragments.
2) The first reports in the literature describe anterior cervical discectomy combined with a spinal fusion procedure (ACDF). Fusion was added to address concerns about potential for loss of spinal stability and disc space height, leading to late postoperative complications such as kyphosis and radicular pain (Sonntag and Klara, 1996; Dowd and Wirth, 1999; Matz et al., 2009a; Matz et al., 2009b; Denaro and Di Martino, 2011; Botelho et al., 2012; van Middelkoop et al., 2012).

3) Anterior cervical fusion (ACF) accounted for approximately 80% of cervical spine procedures performed in the United States between 2002 and 2009, while posterior cervical fusion (PCF) accounted for 8.5% of these procedures (Oglesby et al., 2013).

4) **Anterior Cervical Discectomy and Fusion (ACDF)** — removal of all or part of a herniated or ruptured disc or spondolytic bony spur to alleviate pressure on the nerve roots or on the spinal cord in patients with symptomatic radiculopathy. Discectomy is most often combined with fusion to stabilize the spine.

XII. Posterior Approaches

1) **Laminectomy** — removal of the bone between the spinal process and facet pedicle junction to expose the neural elements of the spine; this allows for the inspection of the spinal canal, identification and removal of pathological tissue, and decompression of the cord and roots.

2) **Laminoplasty** — the opening of the lamina to enlarge the spinal canal. There are several laminoplasty techniques; all aim to alleviate cord compression by reconstructing the spinal canal. Laminoplasty is commonly performed to decompress the spinal cord in patients with multilevel degenerative spinal stenosis and neutral or lordotic alignment.

3) **Laminoforaminotomy (also known as posterior discectomy)** — the creation of a small window in the lamina to facilitate removal of arthritic bone spurs and herniated disc material pressing on the nerve root as it exits through the foramen. The procedure widens the opening of the foramen so that the nerve exits without being compressed.

XIII. REFERENCES

XIV. **Fusion References**

CPT Codes:

- **Lumbar Fusion (Single level)** = 22533, 22558, 22612, 22630, 22633 *Plus Decompression*
- **Lumbar Fusion (Multiple levels)** = 22533, +22534, 22558, +22585, 22612, +22614, 22630, +22632, 22633, +22634 (*indicates multiple levels*), *Plus Decompression*
- **Lumbar Decompression** = 63030, +63035, 63005, 63012, 63017, 63042, +63044, 63047, +63048, 63056, +63057
- **Lumbar Discectomy/Microdiscectomy** = 63030, +63035, 62380
- **Lumbar Artificial Disc Replacement** = 22857, 22862, 22865

OVERVIEW:

This guideline outlines the key surgical treatments and indications for common lumbar spinal disorders and is a consensus document based upon the best available evidence. Spine surgery is a complex area of medicine and this document breaks out the treatment modalities for lumbar spine disorders into surgical categories: lumbar discectomy/microdiscectomy, lumbar decompression, and lumbar fusion surgery. See the additional information section for procedures considered not medically necessary.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INTRODUCTION

I. **Lumbar Discectomy/Microdiscectomy** is a surgical procedure to remove part of the damaged spinal disc. The damaged spinal disc herniates into the spinal canal and compresses the nerve roots. Nerve root compression leads to symptoms like low back pain, radicular pain, numbness and tingling, muscular weakness, and paresthesia. Typical disc herniation pain is exacerbated with any movement that causes the disc to increase pressure on the nerve roots.

II. **Lumbar Decompression (Laminectomy, Laminotomy, Facetectomy, and Foraminotomy):** Laminectomy is common decompression surgery. The American Association of Neurological Surgeons defines laminectomy as a surgery to remove the back part of vertebra, lamina, to create more space for the spinal cord and nerves. The most common indication for laminectomy is spinal stenosis. Spondylolisthesis and herniated disk are also frequent indications for laminectomy. Decompression surgery is usually performed as part of lumbar fusion surgery.

III. **Lumbar Fusion Surgery:** Lumbar spinal fusion (arthrodesis) is a surgical procedure used to treat spinal conditions of the lumbar, e.g., degenerative disc disease, spinal stenosis,
injuries/fractures of the spine, spinal instability, and spondylolisthesis. Spinal fusion is a “welding” process that permanently fuses or joins together two or more adjacent bones in the spine, immobilizing the vertebrae and restricting motion at a painful joint. It is usually performed after other surgical procedures of the spine, such as discectomy or laminectomy. The goal of fusion is to increase spinal stability, reduce irritation of the affected nerve roots, compression on the spinal cord, disability, and pain and/or numbness. Clinical criteria for single level fusion versus multiple level fusions are outlined under the indications section.

I. INDICATIONS FOR LUMBAR & PRE-SACRAL SURGERY: (This section of the clinical guidelines provides the clinical criteria for each of the lumbar and pre-sacral spine surgery categories.)

- **Indications for Lumbar Discectomy/Microdiscectomy** - Surgical indications for inter-vertebral disc herniation*:
 a) Primary radicular symptoms noted upon clinical exam that significantly hinder daily activities; AND
 b) Failure to improve with at least six (6) consecutive weeks of appropriate conservative treatment; And Documented failure of at least six (6) consecutive weeks of any 2 of the following physician-directed conservative treatments:
 i) Analgesics, steroids, and/or NSAIDs
 ii) Structured program of physical therapy
 iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 iv) Epidural steroid injections and or facet injections /selective nerve root block; AND
 c) Imaging studies showing evidence of inter-vertebral disc herniation that correlate exactly with the patient's symptoms / signs

- ***Other indications:** Microdiscectomy may be used as the first line of treatment (no conservative treatment required) in the following clinical scenarios:
 a) Progressive nerve compression resulting in an acute motor neurologic deficit sensory or motor due to herniated disc. The neurological deficits should be significant: 0-2/5 on the motor function scale for L5 or S1 roots; 0-3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with conservative treatment and are not considered an indication for early surgery; OR
 b) Cauda equina syndrome (loss of bowel or bladder control).

NOTE: Percutaneous lumbar discectomy, radiofrequency disc decompression, and related procedures are deemed investigational procedures and are not approved. Discectomy and microdiscectomy are the gold standards.
II. **Indications for Lumbar Decompression: Laminectomy, Laminotomy, Facetectomy, and Foraminotomy.** These procedures allow decompression by partial or total removal of various parts of vertebral bone and ligaments. **Surgical Indications for spinal canal decompression due to lumbar spinal stenosis***:

1) Neurogenic claudication, and/or radicular leg pain that impairs daily activities for **at least twelve (12) weeks**: AND

2) Failure to improve with at least 6 weeks of appropriate conservative therapy. Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:

 a) Analgesics, steroids, and/or NSAIDs
 b) Structured program of physical therapy
 c) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 d) Epidural steroid injections and or facet injections /selective nerve root block: AND

3) Imaging findings demonstrating moderate to severe stenosis consistent with clinical signs/symptoms.

4) **Other Indications:** Lumbar decompression may be used as the first line of treatment (no conservative treatment required) in any of the following clinical scenarios:

 a) Progressive nerve compression resulting in an acute neurologic (sensory or motor) deficit. The neurological deficits should be significant—0-2/5 on the motor function scale for L5 or S1 roots; 0-3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with conservative treatment and are not considered an indication for early surgery.

 b) Cauda equina syndrome (loss of bowel or bladder control)

 c) Spinal stenosis due to tumor, infection, or trauma

NOTE: Percutaneous decompressions, endoscopic decompression, and related procedures (laser, etc.) are deemed investigational procedures and are not approved. Open or microdecompressions via laminectomy or laminotomy are the gold standards.

III. **Indications for Lumbar Spine Fusion: Single Level with or without decompression**

i) Because of variable outcomes with fusion surgery, patients should be actively involved in the decision-making process and provided appropriate decision-support materials when considering this intervention. The following indicators must be present***:

 a) Lumbar back pain, neurogenic claudication, and/or radicular leg pain without sensory or motor deficit that impairs daily activities **for at least 6 months**: AND

 b) Failure to improve with at least 6 weeks of appropriate conservative therapy (six months for isolated LBP). Documented failure of at least 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:

 i) Analgesics, steroids, and/or NSAIDs
ii) Structured program of physical therapy

iii) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician

iv) Epidural steroid injections and or facet injections /selective nerve root block; AND

c) Imaging studies corresponding to the clinical findings; AND

d) At least one of the following clinical conditions:

i) Spondylolisthesis [Neural Arch Defect -Spondylolytic spondylolisthesis, degenerative spondylolisthesis, and congenital unilateral neural arch hypoplasia]; OR

ii) Evidence of segmental instability -Excessive motion, as in degenerative spondylolisthesis, segmental instability, and surgically induced segmental instability; OR

iii) Revision surgery for failed previous operation(s) for pseudoarthrosis at the same level at least 6-12 months from prior surgery** if significant functional gains are anticipated; OR

iv) Revision surgery for failed previous operation(s) repeat disk herniations if significant functional gains are anticipated (Note: Many recurrent disc herniations can be treated with discectomy alone, so specific indications for the addition of fusion will be required); OR

v) Fusion for the treatment of spinal tumor, cancer, or infection; OR

vi) Chronic low back pain or degenerative disc disease (disc degeneration without significant neurological compression presenting with low back pain) must have failed at least 6 months of appropriate active non-operative treatment (completion of a comprehensive cognitive-behavioral rehabilitation program is mandatory) and must be evaluated on a case-by-case basis.

NOTE: The results of several randomized trials suggests that in many degenerative cases uninstrumented posterolateral intertransverse fusion has similar results to larger instrumented (PLIF, TLIF, etc.) fusion techniques with fewer morbidities and less likelihood of revision surgery. Accordingly, specific findings suggesting more significant instability should be present when larger techniques are used (gaping of facets, gross motion on flexion/extension radiographs, wide disc spaces).

2) *Other Indications:* Lumbar spinal fusion may be used as the first line of treatment (no conservative treatment required) in the following clinical scenarios:

a) Progressive nerve compression resulting in an acute neurologic deficit (motor) AND

i) one of the aforementioned clinical conditions, except chronic low back pain or degenerative disc disease. The neurological deficits must be significant: 0-2/5 on the motor function scale for L5 or S1 roots; or 0-3/5 for L3 or L4 roots. Lesser
degrees of motor dysfunction may resolve with conservative treatment and are not considered an indication for early surgery.

b) Cauda equina syndrome (loss of bowel or bladder control)

IV. **REPEAT LUMBAR SPINE FUSION OPERATIONS**: Repeat lumbar fusion operations will be reviewed on a case-by-case basis upon submission of medical records and imaging studies that demonstrate remediable pathology. The below must also be documented and available for review of repeat fusion requests:

1) Rationale as to why surgery is preferred over other non-invasive or less invasive treatment procedures.

2) Signed documentation that the patient has participated in the decision-making process and understands the high rate of failure/complications.

Instrumentation, bone formation or grafting materials, including biologics, should be used at the surgeon’s discretion; however, use should be limited to FDA approved indications regarding the specific devices or biologics.

NOTE: Pre-sacral, axial lumbar interbody fusion (AxiaLIF) is not an approved surgical approach due to insufficient evidence. Artificial lumbar disc replacement or other lumbar implants are not an approved procedure due to insufficient evidence.

V. Indications for multi-level fusions with or without decompression (all multi-level fusion surgeries will be reviewed on a case-by-case basis). Because of variable outcomes with fusion surgery, patients should be actively involved in the decision-making process and provided appropriate decision-support materials when considering this intervention. The following clinical indications must be present*:

1) Lumbar back pain, neurogenic claudication, and/or radicular leg pain without sensory or motor deficit that impairs daily activities for at least 6 months; AND

2) Failure to improve with at least 6 weeks of appropriate conservative therapy. Documented failure of 6 consecutive weeks of any 2 of the following physician-directed conservative treatments:

 a) Analgesics, steroids, and/or NSAIDs
 b) Structured program of physical therapy
 c) Structured home exercise program prescribed by a physical therapist, chiropractic provider or physician
 d) Epidural steroid injections and or facet injections /selective nerve root block: AND

3) Imaging studies corresponding to the clinical findings: AND

4) At least one of the following clinical conditions:

 a) Multiple level spondylolisthesis (Note: Fusions in cases with single level spondylolisthesis should be limited to the unstable level); OR
b) Fusion for the treatment of spinal tumor, trauma, cancer, or infection affecting multiple levels; OR

c) Intra-operative segmental instability

5) *Other Indications:* Lumbar spinal fusion may be used as the first line of treatment (no conservative treatment required) in the following clinical scenarios:

 a) Progressive nerve compression resulting in an acute neurologic deficit (motor), AND one of the aforementioned clinical conditions. The neurological deficits must be significant: 0-2/5 on the motor function scale for L5 or S1 roots; or 0-3/5 for L3 or L4 roots. Lesser degrees of motor dysfunction may resolve with appropriate conservative treatment and are not considered an indication for early surgery.

 b) Instrumentation, bone formation or grafting materials, including biologics, should be used at the surgeon’s discretion; however, use should be limited to FDA approved indications regarding the specific devices or biologics.

 c) This lumbar surgery guideline does not address spinal deformity surgeries or the clinical indications for spinal deformity surgery [CPT codes 22800-22812].

NOTE: Pre-sacral, axial lumbar interbody fusion (AxiaLIF) is not an approved surgical approach due to insufficient evidence. Artificial lumbar disc replacement or other lumbar implants are not an approved procedure due to insufficient evidence.

VI. CONTRAINDICATIONS FOR SPINE SURGERY (Note: Cases will not be approved if the below contraindications exist):

1) **Medical contraindications** to surgery, e.g., severe osteoporosis; infection of soft tissue adjacent to the spine and may be at risk for spreading to the spine; severe cardiopulmonary disease; anemia; malnutrition and systemic infection

2) **Psychosocial risk factors.** It is imperative to rule out non-physiologic modifiers of pain presentation or non-operative conditions mimicking radiculopathy or instability (e.g., peripheral neuropathy, piriformis syndrome, myofascial pain, sympathetically mediated pain syndromes, sacroiliac dysfunction, psychological conditions, etc.) prior to consideration of elective surgical intervention. Patients with clinically significant depression or other psychiatric disorders being considered for elective spine surgery will be reviewed on a case-by-case basis and the surgery may be denied for risk of failure.

3) **Active Tobacco or Nicotine** use prior to fusion surgery. Patients must be free from smoking and/or nicotine use for at least six weeks prior to surgery and during the entire period of fusion healing.

4) **Morbid Obesity.** Contraindication to surgery in cases where there is significant risk and concern for improper post-operative healing, post-operative complications related to morbid obesity, and/or an inability to participate in post-operative rehabilitation. These cases will be reviewed on a case-by-case basis and may be denied given the risk of failure.

VII. ADDITIONAL INFORMATION
1) **Spinal surgeries should be performed only by those with extensive surgical training** (neurosurgery, orthopaedic surgery)

2) **Services Not Covered:** The following procedures are considered either still under investigation or are not recommended based upon the current evidence: Percutaneous lumbar discectomy; Laser discectomy; Percutaneous Radiofrequency Disc Decompression; intradiscal electrophoretical annuloplasty (IDEA) or more commonly called IDET (Intradiscal Electrothermal therapy); Nucleus Pulpous Replacement; Pre-Sacral Fusion, or Lumbar Artificial Disc Replacement.

 a) **PERCUTANEOUS DISCECTOMY** is an invasive operative procedure to accomplish partial removal of the disc through a needle which allows aspiration of a portion of the disc trocar under imaging control. It’s only indication is in order to obtain diagnostic tissue, due to lack of evidence to support long-term improvement compared to gold standard discectomy. This includes radiofrequency disc decompression.

 b) **LASER DISCECTOMY** is a procedure which involves the delivery of laser energy into the center of the nucleus pulposus using a fluoroscopically guided laser fiber under local anesthesia. The energy denatures protein in the nucleus, causing a structural change which is intended to reduce intradiscal pressure. Its effectiveness has not been fully established.

 c) **INTRADISCAL ELECTROTHERMAL ANNULOPLASTY (IDEA)** *(more commonly called IDET, or Intradiscal Electrothermal therapy)* is an outpatient non-operative procedure in which a wire is guided into the identified painful disc using fluoroscopy. The wire is then heated at the nuclear-annular junction within the disc. It has not been shown to be effective.

 d) **NUCLEUS PULPOSUS REPLACEMENT** Involves the introduction of a prosthetic implant into the intervertebral disc, replacing the nucleus pulposus while preserving the annulus fibrosus. It has not been shown to be effective relative to other gold standard interventions.

 e) **LUMBAR ARTIFICIAL DISC REPLACEMENT:** Involves the insertion of a prosthetic device into an intervertebral space from which a degenerated disc has been removed, sparing only the peripheral annulus. The prosthetic device is designed to distribute the mechanical load of the vertebrae in a physiologic manner and maintain range of motion. Studies do not demonstrate a long-term advantage of measured function or pain over comparison groups undergoing fusion. The longevity of this prosthetic device has not yet been determined.

3) **Conservative Therapy:** (Musculoskeletal) includes primarily physical therapy and/or injections; and a combination of modalities, such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, diathermy, chiropractic treatments, or physician supervised home exercise program. Part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

4) **Home Exercise Program** *(HEP)* – the following two elements are required to meet guidelines for completion of conservative therapy:

 a) Information provided on exercise prescription/plan AND
b) Follow up with member with information provided regarding completion of HEP (after suitable 4-6 week period), or inability to complete HEP due to physical reason - i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

5) **Isolated Low Back Pain** - Pain isolated to the lumbar region of the spine and the surrounding paraspinal musculature. Also referred to ‘mechanical low back pain’ or ‘discogenic pain’. No associated neurogenic claudication or radiculopathy.

6) **Claims Billing & Coding:**

 a) NIA uses a combination of internally developed edits in addition to an enhanced set of industry standard editing. NIA’s Claims Edit Module is a group of system edits that run multiple times per day. Edits that are part of this module include industry standard edits that apply to spine surgery services and NIA custom edits developed specifically for spine surgery. The following describes each of the edits NIA applies:

7) **Outpatient Code Editor (OCE):** This edit performs all functions that require specific reference to HCPCS codes, HCPCS modifiers, and ICD-9-CM diagnosis codes. The OCE only functions on a single claim and does not have any cross claim capabilities. NIA is consistent with CMS.

8) **National Correct Coding Initiative (NCCI) editing:** The edit prevents improper payment when incorrect code combinations are reported. The NCCI contains two tables of edits. The Column One/Column Two Correct Coding Edits table and the Mutually Exclusive Edits table include code pairs that should not be reported together for a number of reasons explained in the Coding Policy Manual. NIA is consistent with CMS.

 a) Incidental edits: This edit applies if a procedure being billed is a component of another procedure that occurred on the same date of service for the same provider and tax ID and claimant.

 b) Mutually exclusive editing: This edit applies if a procedure being billed is mutually exclusive with a procedure that occurred on the same date of service for the same provider tax ID and claimant.

9) **Multiple Procedure Discounts (MPD):** This edit applies a reduction to the second and any other subsequent services by the same provider, in the same setting, for the same member. We typically apply a 50% reduction. NIA follows the CMS methodology that began in January 2011 which allows for application of MPD to codes within CMS’s two specific advanced imaging code families. However, NIA differs from CMS in that we apply MPD to all provider types unless health plan contracts prohibit this.

10) **Lumbar Fusion** - Fusions can be performed either anteriorly, laterally, or posteriorly, or via a combined approach; although simple posterolateral fusions are indicated in the great majority of cases requiring fusion. Aggressive surgical approaches to fusion may be an indication for denial of cases (when such techniques have not been demonstrated to be superior to less morbid techniques) or recommendation for alternative procedure. These are the surgical approaches:

 a) Intertransverse Fusion or Posterolateral Fusion
b) Anterior Interbody Fusion (ALIF)
c) Lateral or Transpsoas Interbody Fusion (XLIF)
d) Posterior or Trans-foraminal Interbody Fusion (PLIF or TLIF)
e) Anterior/posterior Fusion (360-degree)
f) Pre-sacral, axial lumbar interbody fusion (AxiaLIF) is still being investigated and is not recommended.

11) Use of bone grafts including autologous or allograft which might be combined with metal or biocompatible devices to produce a rigid, bony connection between two or more adjacent vertebrae are common. Bone formation or grafting materials including biologics should be used at the surgeon’s discretion; however, use of biologics should be limited to FDA approved indications in order to limit complications (especially BMP).

12) All operative interventions must be based upon positive correlation of clinical findings, clinical course, and diagnostic tests and must be performed by surgeons with appropriate training (neurosurgery, orthopaedic surgery). A comprehensive assimilation of these factors must lead to a specific diagnosis with positive identification of pathologic condition(s). A failure of accurate correlation may be an indication for denial of cases. It is imperative to rule out non-physiologic modifiers of pain presentation or non-operative conditions mimicking radiculopathy or instability (e.g., peripheral neuropathy, piriformis syndrome, myofascial pain, sympathetically mediated pain syndromes, sacroiliac dysfunction, psychological conditions, etc.) prior to consideration of elective surgical intervention.

13) Operative treatment is indicated when the natural history of surgically treated lesions is better than the natural history for non-operatively treated lesions.
 a) All patients being considered for surgical intervention should first undergo a comprehensive neuro-musculoskeletal examination to identify mechanical pain generators that may respond to non-surgical techniques or may be refractory to surgical intervention.
 b) While sufficient time allowances for non-operative treatment are required to determine the natural cause and response to non-operative treatment of low back pain disorders, timely decision making for operative intervention is critical to avoid de-conditioning and increased disability (exclusive of "emergent" or urgent pathology such as cauda equina syndrome or associated rapidly progressive neurologic loss).

14) In general, if the program of non-operative treatment fails, operative treatment is indicated when:
 a) Improvement of the symptoms has plateaued or failed to occur and the residual symptoms of pain and functional disability are unacceptable at the end of 6 to 12 weeks of active treatment, or at the end of longer duration of non-operative programs for debilitated patients with complex problems; and/or
b) Frequent recurrences of symptoms cause serious functional limitations even if a non-operative active treatment program provides satisfactory relief of symptoms, and restoration of function on each recurrence.

15) **Lumbar spinal stenosis and associated lumbar spondylolisthesis** - Spinal stenosis is narrowing of the spinal column or of the neural foramina where spinal nerves leave the spinal column, causing pressure on the spinal cord. The most common cause is degenerative changes in the lumbar spine. Neurogenic claudication is the most common symptom, referring to “leg symptoms encompassing the buttock, groin and anterior thigh, as well as radiation down the posterior part of the leg to the feet.” In addition to pain, leg symptoms can include fatigue, heaviness, weakness and/or paresthesia. Some patients may also suffer from accompanying back pain. Symptoms are worse when standing or walking and are relieved by sitting. Lumbar spinal stenosis is often a disabling condition, and it is the most common reason for lumbar spinal surgery in adults over 65 years.

16) **Degenerative lumbar spondylolisthesis** - is the displacement of a vertebra in the lower part of the spine; one lumbar vertebra slips forward on another with an intact neural arch and begins to press on nerves. The slippage occurs at the L4-L5 level most commonly. The most common cause, in adults, is degenerative disease although it may also result from bone diseases and fractures. Spondylolisthesis seldom occurs before the age of 50 years and it disproportionately affects women, especially black women. Degenerative spondylolisthesis is not always symptomatic. *The indications for fusion in this group are evolving and as more evidence emerges, changes to the accepted indications and acceptable techniques used may be made.*

17) **Lumbar degenerative disease without stenosis or spondylolisthesis** - Spondylosis is an umbrella term describing age-related degeneration of the spine. Lumbar degenerative disease without stenosis or spondylolisthesis is characterized by disabling low back pain and spondylosis at L4-5, L5-S1, or both levels.

VIII. **REFERENCES**

TOC

62310-62311 – Spinal Epidural Injections

CPT Codes:
Cervical Thoracic Region: 62320, 62321, 64479 (+64480)
Lumbar Sacral Region: 62322, 62323, 64483 (+64484)

INTRODUCTION

Therapeutic Spinal Epidural Injections or Select Nerve Root Blocks (Transforaminal) are types of interventional pain management procedures. The therapeutic use of epidural injections is
for short-term pain relief associated with acute back pain or exacerbation of chronic back pain. With therapeutic injections a corticosteroid is injected close to the target area with the goal of pain reduction. Epidural injections should be used in combination with other active conservative treatment modalities and not as stand alone treatment for long-term back pain relief. There are different approaches used when administering spinal epidural injections:

1. **Interlaminar** epidural injections, with steroids, access the epidural space between two vertebrae (Interlaminar) to treat cervical, lumbar or thoracic pain with radicular pain. These procedures should be performed using fluoroscopic guidance. Interlaminar epidural injections are the most common type of epidural injection.

2. **Transforaminal** epidural injections (also called selective nerve root blocks) access the epidural space via the intervertebral foramen where the spinal nerves exit (cervical, lumbar or thoracic region). It is used both diagnostically and therapeutically. Some studies report lack of evidence and risks of transforaminal epidural injections. These procedures are always aided with fluoroscopic guidance.

3. **Caudal** epidural injections, with steroids, are used to treat back and lower extremity pain, accessing the epidural space through the sacral hiatus, providing access to the lower nerve roots of the spine. These procedures should be performed using fluoroscopic guidance. Failed back surgery syndrome is the most common reason for the caudal approach.

The rationale for the use of spinal epidural injections is that the sources of spinal pain, e.g., discs and joints, are accessible and amendable to neural blockade.

Medical necessity management for epidural injections includes an initial evaluation including history and physical examination and a psychosocial and functional assessment. The following must be determined: nature of the suspected organic problem; non-responsiveness to active conservative treatment; level of pain and functional disability; conditions which may be contraindications to epidural injections; and responsiveness to prior interventions.

Interventional pain management specialists do not agree on how to diagnose and manage spinal pain; there is a lack of consensus with regards to the type and frequency of spinal interventional techniques for treatment of spinal pain. The American Society of Interventional Pain Physicians (ASIPP) guidelines and International Spine Intervention Society (SIS) guidelines provide an algorithmic approach which provides a step-by-step procedure for managing chronic spinal pain based upon evidence-based guidelines. It is based on the structural basis of spinal pain and incorporates acceptable evidence of diagnostic and therapeutic interventional techniques available in managing chronic spinal pain.

The guidelines and algorithmic approach referred to above include the evaluation of evidence for diagnostic and therapeutic procedures in managing chronic spinal pain and recommendations for managing spinal pain. The Indications and Contraindications presented within this document are based on the guidelines and algorithmic approach. Prior to performing this procedure, shared decision-making between patient and physician must
occur, and patient must understand the procedure and its potential risks and results (moderate short-term benefits, and lack of long-term benefits).

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

I. INDICATIONS FOR EPIDURAL INJECTIONS OR SELECTIVE NERVE BLOCKS (caudal, interlaminar, and transformaminal) (Injection of local anesthetics with corticosteroids)

1) Acute pain or exacerbation of chronic radicular pain with the following clinical timeframes:
 - Neck or back pain with acute radicular pain:
 i) after 2 weeks or more of acute radicular pain that has failed to respond or poorly responded to conservative (including medication) management unless the medical reason this conservative treatment cannot be done is clearly documented; OR
 - Failed back surgery syndrome or epidural fibrosis causing radicular pain:
 i) typically not done immediately post-surgery. Documentation requires a medical reason that clearly indicates why an injection is needed.
 ii) patient must engage in some form of other active conservative treatment* for a minimum of 6 weeks in the last 6 months or details of engagement in other forms of active conservative non-operative treatment if the patient had any prior spinal injections prior to epidural injections unless the medical reason this conservative treatment cannot be done is clearly documented; OR
 - Spinal stenosis (foraminal, central or disc disease) causing radicular pain
 - patient must engage in some form of other active conservative treatment* for a minimum of 6 weeks in the last 6 months or details of engagement in other forms of active conservative non-operative treatment if the patient had any prior spinal injections prior to epidural injections unless the medical reason this conservative treatment cannot be done is clearly documented; OR
 - Diagnostic transformaminal injection to identify the pain generator for surgical planning; AND
 - Average pain levels of ≥ 6 on a scale of 0 to 10 or intermittent or continuous pain causing functional disability.

II. FREQUENCY OF REPEAT THERAPEUTIC INJECTIONS:

1) Epidural injections may be repeated only as medically necessary. Each epidural injection requires an authorization and the following criteria must be met for repeat injections:
a) Documented proof that the prior injection had a positive response by significantly decreasing the patient’s pain (at least 30% reduction in pain after initial injections or significant documented functional improvement). Or a second injection may be performed at a different spinal level or with a different epidural technique if there is documentation of a question about the pain generator or there is evidence of multilevel pathology; **AND**

b) No more than 3 procedures in a 12-week period of time per region with at least 14 days between injections in the initial diagnostic phase. At least 50% or more cumulative pain relief obtained for a minimum of 6 weeks after initial injections; **AND**

c) The patient continues to have ongoing pain or documented functional disability (≥ 6 on a scale of 0 to 10); **AND**

d) The patient is actively engaged in other forms of active conservative non-operative treatment (unless pain prevents the patient from participating in conservative therapy*); **AND**

e) Repeat injections after the initial diagnostic phase should be done at intervals of at least 2 months provided that previous injections resulted in at least 50% relief or functional improvement for at least 2 months and are limited to a maximum total of 4 therapeutic procedures per region per 12 months. If special circumstances are documented (e.g. elderly patient with severe spinal stenosis and not an operative candidate) then repeat injections are limited to a maximum of 6 procedures in 12 months.

NOTE: Each epidural injection requires an authorization.

f) If the neural blockade is applied for different regions), injections may be administered at intervals of no sooner than 14 days for most types of procedures.

g) **Injecting multiple regions or performing multiple procedures during the same visit may be deemed medically unnecessary unless documentation is provided outlining an unusual situation.**

i) No more than 2 levels of transforaminal blocks should be done in one day.

NOTE: An injection of opioid or other substance for the purpose of completing a trial for an implantable infusion pump is approvable.

III. CONTRAINDICATIONS FOR EPIDURAL INJECTIONS

1) Bleeding diathesis and full anticoagulation (risk of epidural hematoma);
2) Severe spinal stenosis resulting in intraspinal obstruction;
3) Local infection at injection site;
4) Predominantly psychogenic pain;
5) Sepsis;
6) Hypovolemia;
7) Uncontrolled diabetes;
8) Uncontrolled glaucoma;
9) High concentrations of local anesthetics in patients with multiple sclerosis;
10) For diagnosis or treatment of facet mediated pain;
11) Known or suspected allergic reaction to steroid medications;
12) Spinal infection; OR
13) Acute fracture.

IV. **ADDITIONAL INFORMATION:**

1) *Conservative Therapy:* (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

2) **Home Exercise Program** - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

a) Information provided on exercise prescription/plan AND

b) Follow up with member with documentation provided regarding completion of HEP, (after suitable 4-6 week period) or inability to complete HEP due to physical reason- i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

3) Terminology: Interlaminar Epidural; Selective Nerve Root Injection (transforaminal only): Transforaminal Injection; Injections of Spinal Canal

4) **Hip-spine syndrome** - Hip-spine syndrome is a condition that includes both debilitating hip osteoarthritis and low back pain. Abnormal spinal sagittal alignment and difficulty in maintaining proper balance, as well as a wobbling gait, may be caused by severe osteoarthritis of the hip joint. Epidural injections are used to determine a primary pain generator in this condition.

5) **Spondylolisthesis and nerve root irritation** - Degenerative lumbar spondylololisthesis is the displacement of a vertebra in the lower part of the spine; one lumbar vertebra slips forward on another with an intact neural arch and begins to press on nerves. The most common cause, in adults, is degenerative disease although it may also result from bone diseases and fractures. Degenerative spondylolisthesis is not always symptomatic. Epidural injections may be used to determine a previously undocumented nerve root irritation as a result of spondylolisthesis.

6) **Lumbar spinal stenosis with radiculitis** - Spinal stenosis is narrowing of the spinal column or of the neural foramina where spinal nerves leave the spinal column, causing pressure on the spinal cord. The most common cause is degenerative changes in the lumbar spine. Neurogenic claudication is the most common symptom, referring to “leg
symptoms encompassing the buttock, groin and anterior thigh, as well as radiation down the posterior part of the leg to the feet.” In addition to pain, leg symptoms can include fatigue, heaviness, weakness and/or paresthesia. Some patients may also suffer from accompanying back pain. Symptoms are worse when standing or walking and are relieved by sitting. Lumbar spinal stenosis is often a disabling condition, and it is the most common reason for lumbar spinal surgery in adults over 65 years. The most common levels of stenosis are L3 through L5, but it may occur at multilevels in some patients. Radiculitis is the inflammation of a spinal nerve root that causes pain to radiate along the nerve paths. Epidural injections help to ascertain the level of the pain generator in this condition.

7) **Postoperative epidural fibrosis** - Epidural fibrosis is a common cause of failed back surgery syndrome. With the removal of a disc, the mechanical reason for pain may be removed, but an inflammatory condition may continue after the surgery and may cause pain. Epidural corticosteroids, with their anti-inflammatory properties, are used to treat postoperative fibrosis and may be used along with oral Gabapentin to reduce pain.

8) **Lumbar herniated disc** - Epidural steroid injections have been proven to be effective at reducing symptoms of lumbar herniated discs. Evidence shows that they can be successful in 42% to 56% of patients who do not improve after 6 weeks of conservative treatment. Observation and epidural steroid injection are effective nonsurgical treatments for this condition.

9) **Failed back surgery syndrome** - Failed back surgery syndrome (FBSS) is characterized by persistent or recurring low back pain, with or without sciatica, following lumbar surgery. The most common cause of FBSS is epidural fibrosis which be triggered by a surgical procedure such as discectomy. The inflammation resulting from the surgical procedure may start the process of fibrosis and cause pain. Epidural steroid injections are administered to reduce pain.

REFERENCES

CPT Codes:
Cervical Thoracic Region: 64490 (+ 64491, +64492)
Lumbar Sacral Region: 64493 (+64494, +64495)

INTRODUCTION

Facet joints (also called zygapophysial joints or z-joints), posterior to the vertebral bodies in the spinal column and connecting the vertebral bodies to each other, are located at the junction of the inferior articular process of a more cephalad vertebra and the superior articular process of a more caudal vertebra. These joints provide stability and enable movement, allowing the spine to bend, twist, and extend in different directions. They also restrict hyperextension and hyperflexion.

Facet joints are clinically important spinal pain generators in patients with chronic spinal pain. In patients with chronic low back pain, facet joints have been implicated as a cause of the pain in 15% to 45% of patients. Facet joints are considered as the cause of chronic spinal pain in 48% of patients with thoracic pain and 54% to 67% of patients with chronic neck pain. Facet joints may refer pain to adjacent structures, making the underlying diagnosis difficult as referred pain may assume a pseudoradicular pattern. Lumbar facet joints may refer pain to the back, buttocks, and lower extremities while cervical facet joints may refer pain to the head, neck and shoulders.

Imaging findings are of little value in determining the source and location of ‘facet joint syndrome’, a term originally used by Ghormley and referring to back pain caused by pathology at the facet joints. Imaging studies may detect changes in facet joint architecture, but correlation between radiologic findings and symptoms is unreliable. Although clinical signs are also unsuitable for diagnosing facet joint-mediated pain, they may be of value in selecting patients for controlled local anesthetic blocks of either the medial branches or the facet joint itself.

Medical necessity management for paravertebral facet injections includes an initial evaluation including history and physical examination and a psychosocial and functional assessment. The following must be determined: nature of the suspected organic problem; non-responsiveness to conservative treatment*; level of pain and functional disability; conditions which may be contraindications to paravertebral facet injections; and responsiveness to prior interventions.
The most common source of chronic pain is the spine and about two-thirds of the U.S. population suffers from spinal pain sometime during their life span. Facet joint interventions are used in the treatment of pain in certain patients with a confirmed diagnosis of facet joint pain. Interventions include intraarticular injections and medial branch nerve blocks in the lumbar, cervical and thoracic spine. Prior to performing this procedure, shared decision-making between patient and physician must occur, and patient must understand the procedure and its potential risks and results. Facet joint injections or medial branch nerve blocks require guidance imaging.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

Indications for Facet Joint Injections or Medial Branch Nerve Blocks:

1) To confirm disabling non-radicular low back (lumbosacral), mid back (thoracic) or neck (cervical) pain*, suggestive of facet joint origin as documented in the medical record based upon ALL of the following:
 a) history, consisting of mainly axial or non-radicular pain; AND
 b) Lack of evidence, either for discogenic or sacroiliac joint pain; AND
 c) Lack of disc herniation or evidence of radiculitis; AND
 d) Facet blocks should not be performed at same levels as previous surgical fusion; AND
 e) Intermittent or continuous pain with average pain levels of ≥ 6 on a scale of 0 to 10 or functional disability prior to each injection, including each unilateral facet block; AND
 f) Duration of pain of at least 2 months; AND
 g) Failure to respond to conservative non-operative therapy management* for a minimum of 6 weeks in the last 6 months prior to facet injections or details of active engagement in other forms of active conservative non-operative treatment if the patient had prior spinal injections unless the medical reason this treatment cannot be done is clearly documented.
 h) All procedures must be performed using fluoroscopic or CT guidance.

NOTE: Ultrasound guidance is not a covered benefit and procedure performed using ultrasound guidance are not reimbursable.

II. FREQUENCY OF FACET BLOCK:

1) There must be **a minimum of 14 days** between injections.

2) There must be a positive response of ≥ 50% pain relief or improved ability to function or a change in technique from an initial intraarticular facet block to a facet joint nerve block.
can be considered. Repeat therapeutic injections should be performed at a frequency of 2 months or longer provided that at least 50% relief is obtained for a minimum of 2 months after the previous injection. The patient is actively engaged in other forms of active conservative non-operative treatment if the patient is receiving therapeutic facet joint injections unless pain prevents the patient from participating in conservative therapy*).

3) **Maximum of 4 procedures per region every 12 months except under unusual circumstances such as a recurrent injury.** (NOTE: Unilateral facet blocks performed at the same level on the right vs. left within 2 weeks of each other would be considered as one procedure.)

4) If the procedures are applied for different regions, they may be performed at intervals of no sooner than 2 weeks for most types of procedures.

5) **Maximum of 3 levels injected on same date of service.**

6) **Radiofrequency** neurolysis procedures should be considered in patients with positive facet blocks (with at least 70% pain relief and/or improved ability to function, but with insufficient sustained relief (less than 2-3 months improvement).

III. **CONTRAINDICATIONS FOR FACET JOINT INJECTIONS:**

1) History of allergy to contrast administration, local anesthetics, steroids, or other drugs potentially utilized;

2) Hypovolemia;

3) Infection over puncture site;

4) Bleeding disorders or coagulopathy;

5) History of allergy to medications to be administered;

6) Inability to obtain percutaneous access to the target facet joint;

7) Progressive neurological disorder which may be masked by the procedure;

8) Pregnancy;

9) Spinal infection; OR

10) Acute fracture

IV. **ADDITIONAL INFORMATION:**

1) **Conservative Therapy:** (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

2) **Home Exercise Program** - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
a) Information provided on exercise prescription/plan AND

b) Follow up with member with documentation provided regarding completion of HEP, (after suitable 4-6 week period) or inability to complete HEP due to physical reason- i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

3) **Terminology:** Facet Injections; Facet Joint Blocks; Paravertebral Facet Injections; Paravertebral Facet Joint Injections; Paravertebral Facet Joint Nerve Injections; Zygapophyseal injections; Lumbar Facet Blockade; Medial Branch blocks.

V. REFERENCES

INTRODUCTION

Facet joints (also called zygapophysial joints or z-joints), posterior to the vertebral bodies in the spinal column and connecting the vertebral bodies to each other, are located at the junction of the inferior articular process of a more cephalad vertebra and the superior articular process of a more caudal vertebra. These joints provide stability and enable movement, allowing the spine to bend, twist, and extend in different directions. They also restrict hyperextension and hyperflexion.

Facet joints are clinically important spinal pain generators in patients with chronic spinal pain. Pain mediated by the facet joints may be caused by repetitive stress and/or cumulative low-level trauma resulting in osteoarthritis and inflammation. In patients with chronic low back pain, facet joints have been implicated as a cause of the pain in 15% to 45% of patients. They are considered as the cause of chronic spinal pain in 48% of patients with thoracic pain and 54% to 67% of patients with chronic neck pain. Facet joints may refer pain to adjacent structures, making the underlying diagnosis difficult as referred pain may assume a pseudoradicular pattern. Lumbar facet joints may refer pain to the back, buttocks, and proximal lower extremities while cervical facet joints may refer pain to the head, neck and shoulders.

Imaging findings are of little value in determining the source and location of ‘facet joint syndrome’, a term originally used by Ghormley and referring to back pain caused by pathology at the facet joints. Imaging studies may detect changes in facet joint architecture, but correlation between radiologic findings and symptoms is unreliable. Although clinical signs are also unsuitable for diagnosing facet joint-mediated pain, they may be of value in selecting patients for controlled local anesthetic blocks of either the medial branches or the facet joint itself. This is an established tool in diagnosing facet joint syndrome.

Facet joints are known to be a source of pain with definitive innervations. Interventions used in the treatment of patients with a confirmed diagnosis of facet joint pain include: medial branch nerve blocks in the lumbar, cervical and thoracic spine; and radiofrequency neurolysis (see additional terminology). The medial branch of the primary dorsal rami of the spinal nerves has been shown to be the primary innervations of facet joints. Substance P, a physiologically potent neuropeptide considered to play a role in the nociceptive transmission of nerve impulses, is found in the nerves within the facet joint.

CPT Codes:
Cervical Thoracic Region: 64633, +64634
Lumbar Sacral Region: 64635, +64636
Radiofrequency neurolysis is a minimally invasive treatment for cervical, thoracic and lumbar facet joint pain. It involves using energy in the radiofrequency range to cause necrosis of specific nerves (medial branches of the dorsal rami), preventing the neural transmission of pain. The objective of radiofrequency neurolysis is to both provide relief of pain and reduce the likelihood of recurrence. Used most often for facet joint pain, radiofrequency neurolysis is recently emerging for sacroiliac joint pain. However, it has been shown to have limited evidence in treating sacroiliac joint pain and is considered investigational and not medically necessary.

Members of the American Society of Anesthesiologists (ASA) and the American Society of Regional Anesthesia and Pain Medicine (ASRA) have agreed that conventional or thermal radiofrequency ablation of the medial branch nerves to the facet joint should be performed for neck or low back pain. Radiofrequency neurolysis has been employed for over 30 years to treat facet joint pain. Prior to performing this procedure, shared decision-making between patient and physician must occur, and patient must understand the procedure and its potential risks and results.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

I. INDICATIONS FOR THERAPEUTIC PARAVERTEBRAL FACET JOINT DENERVATION (RADIOFREQUENCY NEUROLYSIS) (local anesthetic block followed by the passage of radiofrequency current to generate heat and coagulate the target medial branch nerve)

1) Positive response to one or two controlled local anesthetic blocks of the facet joint, with at least 70% pain relief and/or improved ability to function for a minimal duration at least equal to that of the local anesthetic, but with insufficient sustained relief (less than 2-3 months relief) and a failure to respond to more active conservative non-operative management for a minimum of 6 weeks in the last 6 months unless the medical reason this treatment cannot be done is clearly documented; OR

2) Positive response to prior radiofrequency neurolysis procedures with at least 50% pain relief and/or improved ability to function for at least 6 months, and the patient is actively engaged in other forms of appropriate active conservative non-operative treatment (unless pain prevents the patient from participating in conservative therapy*): AND

3) The presence of ALL of the following:
 a) Lack of evidence that the primary source of pain being treated is from discogenic pain, sacroiliac joint pain, disc herniation or radiculitis;
 b) Intermittent or continuous facet-mediated pain [average pain levels of ≥ 6 on a scale of 0 to 10] causing functional disability prior to each radiofrequency procedure including radiofrequency procedures done unilaterally on different days;
 c) Duration of pain of at least 3 months.
 d) Maximum of 3 spinal levels performed on same date of service.

II. FREQUENCY:
1) Relief typically lasts between 6 and 12 months and sometimes provides relief for greater than 2 years.

2) Limit to 2 facet neurolysis procedures every 12 months, per region (cervical, thoracic and lumbar are each considered one region). NOTE: Unilateral radiofrequency denervations performed at the same level on the right vs left within 2 weeks of each other would be considered as one procedure.

III. CONTRAINDICATIONS FOR PARAVertebral Facet Joint Denervation (Radiofrequency Neurolysis):

1) History of allergy to local anesthetics or other drugs potentially utilized;
2) Lumbosacral radicular pain (dorsal root ganglion);
3) Conditions/diagnosis for which procedure is used are other than those listed in Indications;
4) Absence of positive diagnostic blocks; OR
5) For any nerve other than the medial branch nerve.

IV. ADDITIONAL INFORMATION:

1) *Conservative Therapy: (Spine) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components, such as rest, ice, heat, modified activities, medical devices, acupuncture and/or stimulators, medications, injections (including trigger point), and diathermy can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care.

2) **Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with documentation provided regarding completion of HEP, (after suitable 4-6 week period) or inability to complete HEP due to physical reason - i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

V. REFERENCES

CPT Codes: 27096

INTRODUCTION
This guideline addresses the use of sacroiliac joint injections for the treatment of low back pain that originates in the region of the sacroiliac joint. An injection of anesthetic and/or steroid may be used for the diagnosis and treatment of sacroiliac joint (SIJ) pain syndrome disorders (such as degenerative joint disease, postsurgical injuries, or traumatic injuries), or for treatment of spondyloarthropathy (inflammatory disorders of the joints and ligaments of the spine).

Sacroiliac joint injections are typically used for the following conditions:

Sacroiliac joint pain syndrome may be caused by various events, including pain secondary to postsurgical or traumatic injury, degeneration (wear and tear), or pregnancy. Physical examination (history and physical, provocative maneuvers) and diagnostic injection help to identify the source of pain as the SIJ.

Diagnostic SIJ injections are used to determine if the SIJ pain originates with the SIJ. Diagnostic blocks can reveal (or fail to reveal) that the source of pain is originating from the SIJ, and then an appropriate treatment plan can be developed (Curatolo and Bogduk, 2010; Manchikanti et al., 2013a).

Therapeutic SIJ injections may be used to treat SIJ pain once it has been determined that the SIJ is the origin of the pain. A therapeutic injection typically includes a corticosteroid and a local anesthetic that can be injected directly into the joint (intra-articular) or into the tissues surrounding the joint (periarticular).

Spondyloarthropathy (also known as spondyloarthritis) is the name for a family of rheumatic diseases that cause arthritis. Sacroiliitis is a key indicator of spondyloarthritis and is diagnosed with imaging. Patients with spondyloarthropathy are generally managed by rheumatologists and account for only a small percentage of the cases that present in interventional pain management settings.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

I. **INDICATIONS FOR SACROILIAC JOINT INJECTIONS (SIJ)**

1) **For the treatment of SIJ pain:**

 All of the following must be met:

 a) Low back pain maximal below level of L5 which may radiate to the groin or lower extremity persisting at least 3 months; AND
b) Positive exam findings to suggest the diagnosis which may include the pelvic distraction test, pelvic compression test, thigh thrust test, FABER (Patrick’s test) or Gaenslen’s test; AND

c) Active conservative treatment for a minimum of 6 weeks in the last 6 months (including physical therapy, home exercise, patient education, psychosocial support, and/or medication) has failed unless the medical reason this conservative treatment cannot be done is clearly documented; AND

d) Average pain levels of ≥ 6 on a scale of 0 to 10 or intermittent or continuous pain causing functional disability

2) For the treatment of spondyloarthritis

All of the following must be met:

a) The patient has experienced ≥ 3 months of low back pain; AND

b) Age of onset < 45 years; AND

c) Comprehensive pain management program including physical therapy, home exercise, patient education, psychosocial support and/or oral medication is in place; AND

d) Prior history of evidence of sacroiliitis on imaging (i.e., active inflammation on magnetic resonance imaging [MRI] or definite radiographic sacroiliitis grade > 2 bilaterally or grade 3-4 unilaterally); AND

e) 1 or more spondyloarthritis features:

 a. Inflammatory back pain with at least 4 of the following criteria present:
 (1) Age at onset < 45 years
 (2) Insidious onset
 (3) Improvement with exercise
 (4) No improvement with rest
 (5) Pain at night (with improvement upon getting up)

f) Arthritis

g) Enthesitis of the heel (irritability of muscles, tendons, or ligaments where they enter the bone)

h) Uveitis (inflammation of the uvea, the middle layer of the eye)

i) Dactylitis (inflammation of a finger or toe)

j) Psoriasis

k) Crohn’s/colitis

l) Good response to NSAIDs

m) Family history of spondyloarthritis

n) Positive testing for HLA-B27
o) Elevated C-reactive protein (CRP)

II. FREQUENCY OF REPEAT THERAPEUTIC INJECTIONS

1) SIJ injections may be repeated up to 2 times in the initial treatment phase no sooner than 2 weeks apart provided that at least 50% relief is obtained: AND

2) SIJ injections may only be repeated after the initial treatment phase if symptoms recur and the patient has had at least a 50% improvement for a minimum of 6 weeks after each therapeutic injection: AND

3) The injections are performed as one part of a comprehensive treatment program, which will nearly always include an exercise program to improve or maintain spinal mobility: AND

4) Repeat injections should not be done more frequently than every two months for a total of 4 injections in a 12 month period.

III. CONTRAINDICATIONS FOR SACROILIAC JOINT INJECTIONS

1) Active systemic infection

2) Skin infection at the site of needle puncture

3) Bleeding disorder or anticoagulation therapy

4) Uncontrolled high blood pressure

5) Uncontrolled diabetes

6) Unstable angina

7) Congestive heart failure

8) Allergies to contrast, anesthetics, or steroids (AAOS, 2009)

IV. ADDITIONAL INFORMATION

1) Conservative Therapy: (Musculoskeletal) includes a combination of modalities, such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, diathermy, chiropractic treatments, or physician supervised home exercise program. Part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

2) Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:
 a) Information provided on exercise prescription/plan AND
 b) Follow up with member with information provided regarding completion of HEP (after suitable 4-6 week period), or inability to complete HEP due to physical reason-
i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

Low back pain is one of the most common of all spinal pain problems. According to the Centers for Disease Control and Prevention (CDC), the prevalence of low back pain in adults 18 years of age and older is 28.4% and may range as high as 32.1% in adults ≥ 75 years (CDC, 2012). Symptoms of low back pain may arise from multiple sites, including lumbar intervertebral discs, facet joints, sacroiliac joints, ligaments, fascia, muscles, and nerve root dura. The sacroiliac joint has been shown to be a source of pain in 10% to 27% of chronic low back pain (Hansen et al., 2007; Simopoulos et al., 2012; Manchikanti et al., 2013a).

The sacroiliac joint (SIJ) is located between the sacrum (located at the base of the spine) and the pelvis, and supports the weight of the upper body in the standing position. There are SIJs in both the right and left side of the lower back. Strong ligaments hold the joints in place. The SIJ is well innervated and has been shown to be capable of being a source of low back pain and referred pain in the lower extremity. Low back pain originating from the SIJ can result from inflammatory conditions such as sacroiliitis, spondyloarthropathy (ankylosing spondylitis; rheumatoid spondylitis), or from postsurgical or traumatic injury, degeneration (wear and tear), or pregnancy. SIJ pain most often occurs in the buttocks and lower back, and may radiate down through the buttocks and the leg. Physical examination and radiographic techniques may confirm a diagnosis related to spondyloarthropathy. Physical examination, including provocative maneuvers to elicit pain response, and controlled SIJ injections can help diagnose noninflammatory pain arising from the SIJ (Hansen et al., 2007; Medline Plus, 2012; Mayo Clinic, 2013).

In order to confirm correct placement of the injectable medication into the intra-articular space, fluoroscopic or computed tomography (CT) guidance is used. A periarticular injection into the soft tissue may be used if ligamentous or muscular attachments are suspected to be involved. The goal of the therapeutic injection is to reduce inflammation and/or pain and provide longer pain relief. Long-term relief is generally defined as 6 weeks or longer, but positive responders generally have a much longer duration of response: serial injections may be required in order to maintain therapeutic effectiveness (Hansen et al., 2007; AAOS, 2009; Luukkainen et al., 2002; Hawkins and Schofferman, 2009).

Spinal injections for the treatment of SIJ pain syndrome are typically performed as one part of a comprehensive treatment program, which will nearly always include an exercise program to improve or maintain spinal mobility. Potential candidates for SIJ injections include those with low back pain originating from the SIJ that is unresponsive to conservative treatments.

Treatment for SIJ pain depends upon the signs and symptoms, as well as the underlying cause for the pain. Medications, such as over-the-counter analgesics, a short course of narcotics, muscle relaxants or tumor necrosis factor (TNF) inhibitors, such as etanercept (Enbrel), adalimumab (Humira), or infliximab (Remicade), may be prescribed. Therapy sessions with a physical therapist involving range-of-motion, stretching, and strengthening exercises may be used to maintain joint flexibility and strengthen the muscles. Other interventional procedures used to treat SIJ pain include corticosteroid injections to reduce inflammation and pain, radiofrequency denervation, electrical stimulation, or in rare cases, joint fusion (Mayo Clinic, 2013).
The indications for coverage for the treatment of spondyloarthropathy have been established through use of the reviewed clinical studies and through criteria developed by the Assessment of SpondyloArthritis International Society (ASAS) for the classification of axial spondyloarthritis (Sieper et al., 2009). They are in keeping with the benefit guidelines developed by the Centers for Medicare & Medicaid Services (CMS).

While evidence supports that SIJ injection is an effective method of determining the source of pain, evidence supporting the efficacy of SIJ in the treatment of SIJ pain syndrome is considerably limited. There are limited controlled or prospective clinical studies to support SIJ injection for therapeutic purposes. Despite the limited quality of the clinical studies supporting SIJ injection for the treatment of SIJ pain, the procedure is recommended by the American Society of Anesthesiologists (ASA) and the American Society of Regional Anesthesia and Pain Management (ASRAPM) Practice Guidelines. The indications for coverage have been established from the 2009 Comprehensive Evidence-Based Guidelines for Interventional Techniques in the Management of Chronic Spinal Pain, and updated with the 2013 An Update of Comprehensive Evidence-Based Guidelines for Interventional Techniques in Chronic Spinal Pain. Part II: Guidance and Recommendations.

V. REFERENCES

interventions. *Acupuncture in Medicine*, 22(4), 207-213. doi: 10.1136/aim.22.4.207. Retrieved from http://aim.bmj.com/content/22/4/207.long

patients with seronegative spondylarthropathy. *Clinical and Experimental Rheumatology, 7*(1), 88-90. PMID: 10084038.

CPT Codes: 27132, 27134, 27137, 27138

INTRODUCTION:

This guideline outlines the indications for four hip arthroplasty categories: total hip, partial/hemi-arthroplasty, resurfacing, and revision/conversion. Arthroplasty describes the surgical replacement or reconstruction of a joint with implanted devices when the joint has been damaged by an arthritic, traumatic, or malignant process.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

This guideline is structured with clinical indications outlined for each of the following hip arthroplasty applications:

I. Total Hip Arthroplasty (THA)/Hip Resurfacing
 1) THA describes the reconstruction of the entire joint articular surfaces, including the femoral head and acetabular sides.
 2) Hip resurfacing arthroplasty replaces the articular surface of the femoral head with limited removal of femoral bone and the entire surface of the acetabulum.

II. Revision/Conversion Arthroplasty
 1) Revision/Conversion hip arthroplasty describes surgical reconstruction due to failure or complication of a previous arthroplasty or reconstruction.

III. Hemiarthroplasty (Partial Arthroplasty)
 1) Hemiarthroplasty is reconstruction of the femoral head but not the acetabulum and is indicated for the treatment of trauma (no additional clinical guidelines included).

Elective arthroplasty surgery may be considered when pain and documented loss of function (deviation from normal hip function which may include painful weight bearing; painful or inadequate range of motion to accomplish activities of daily living (ADLs) and/or employment; and mechanical catching, locking, popping):
 1) Cause a diminished quality of life
 2) Symptoms have been present for at least 6 months and have not responded to at least 3 months of non-operative care, including rest, activity modification, weight reduction, oral anti-inflammatory medications, physical therapy, gait aides (cane, walking stick, walker, crutches), and/or corticosteroid injections.
 3) Are associated with typical objective findings on physical exam, including reduced hip flexion and rotation, crepitus, hip flexion contracture, antalgic gait limp.
 4) Are associated with radiographic or chondral changes consistent with significant arthritis, including joint space narrowing, subchondral sclerosis, subchondral cysts, and osteophytes (radiographs).
CLINICAL INDICATIONS:

I. **Total Hip Arthroplasty (THA)/Resurfacing**
 This guideline breaks out the criteria for total hip arthroplasty (THA) and hip resurfacing procedures.

a) **Total Hip Arthroplasty (THA):**
 THA may be considered medically necessary when the following criteria are met:
 a) Hip pathology is due to rheumatoid arthritis, femoral neck fracture in the setting of pre-existing arthritis, malignancy, failure of previous surgery, dysplasia, or avascular necrosis with collapse, confirmed by imaging.

 OR

b) When ALL of the following criteria are met:
 i) Pain and documented loss of function (deviation from normal hip function which may include painful weight bearing; painful or inadequate range of motion to accomplish activities of daily living (ADLs) and/or employment; and mechanical catching, locking, popping); are present for at least 6 months; AND
 ii) 3 months of non-operative treatment* have failed to improve symptoms; AND
 iii) Physical exam has typical findings of hip pathology as evidenced by one or more of the following:
 (1) Painful, limited range of motion or antalgic gait, or
 (2) Contracture, or
 (3) Crepitus, or
 (4) Leg length difference; AND
 iv) Imaging demonstrates advanced hip joint arthritis of at least **Kellgren-Lawrence grade 3-4 or ***Tönnis grade 2 or 3;
 v) No injection into the joint within 3 months of surgery;

c) **Relative Contraindications:**
 i) Metal allergy (dependent upon implant choice)
 ii) Chronic renal insufficiency (due to metal ions circulating and potential renal toxicity)

d) **Absolute Contraindications:**
 1) Any injection into the joint within 3 months of surgery
 2) Local or remote active infection
 3) Female of child-bearing age (due to metal ions circulating in blood with potential risk to fetus) (*metal on metal replacements*)
2) **Kellgren-Lawrence Grading System:**
 a) Grade 0: No radiographic features of osteoarthritis
 b) Grade I: Possible joint space narrowing and osteophyte formation
 c) Grade II: Definite osteophyte formation with possible joint space narrowing
 d) Grade III: Moderate multiple osteophytes, definite narrowing of joint space, some sclerosis and possible deformity of bone contour (*some sclerosis and cyst formation and deformity of femoral head and acetabulum*)
 e) Grade IV: Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone contour (*increased deformity of the femoral head and acetabulum*)

3) ***Tönnis Classification of Osteoarthritis by Radiographic Changes***
 a) No signs of osteoarthritis
 b) Mild: Increased sclerosis, slight narrowing of the joint space, no or slight loss of head sphericity
 c) Moderate: Small cysts, moderate narrowing of the joint space, moderate loss of head sphericity
 d) Severe: Large cysts, severe narrowing or obliteration of the joint space, severe deformity of the head

II. **Hip Resurfacing Arthroplasty:**
 Hip resurfacing procedures will be reviewed on a case by case basis.
 a) Hip resurfacing arthroplasty may be considered medically necessary when the following criteria are met:
 a) Pain and documented loss of function (deviation from normal hip function which may include painful weight bearing; painful or inadequate range of motion to accomplish activities of daily living (ADLs) and/or employment; and mechanical catching, locking, popping); are present for at least 6 months; AND
 b) 3 months of non-operative treatment* have failed to improve symptoms; AND
 c) Physical exam has typical findings of hip pathology as evidenced by one or more of the following:
 i) Painful, limited range of motion or antalgic gait, or
 ii) Contracture, or
 iii) Crepitus, or
 iv) Leg length difference; AND
 d) Imaging demonstrates advanced hip joint pathology of at least **Kellgren-Lawrence grade 3-4 or ***Tönnis grade 2 or 3 or avascular necrosis involving less than 50% of the femoral head; AND
 e) Male patient is less than 65 years old, or female patient is less than 55 years old; AND
f) BMI less than 40; AND

g) No injection into the joint within 3 months of surgery; AND

h) Patient does not have evidence of any of the following contraindications:
 i) Osteoporosis or osteopenia (DEXA scan bone mineral density evaluation)
 ii) Other co-morbidity (including medications that contribute to decreased bone mineral density (glucocorticoid steroids, heparin, aromatase inhibitors, thiazolidinediones, proton pump inhibitors, loop diuretics, cyclosporine, anti-retrovirals, anti-psychotics, anti-seizures, certain breast cancer drugs, certain prostate cancer drugs, depo-provera, aluminum-containing antacids) that may contribute to active bone demineralization
 iii) Cystic degeneration at the junction of the femoral head and neck on radiographs or MRI or CT
 iv) Malignancy at the proximal femur
 v) Current or recent hip infection, or sepsis
 vi) Female of child-bearing age (due to metal ions circulating in blood with potential risk to fetus)
 vii) Chronic renal insufficiency (due to metal ions circulating and potential renal toxicity)
 viii) Metal allergy

a) Relative Contraindications:
 i) Osteoporosis or osteopenia (DEXA scan bone mineral density evaluation)

b) Absolute Contraindications:
 ○ Any injection into the joint within 3 months of surgery
 ○ Local or remote active infection
 ○ Female of child-bearing age (due to metal ions circulating in blood with potential risk to fetus) (metal on metal replacements)

2) **Kellgren-Lawrence Grading System:**
 a) Grade 0: No radiographic features of osteoarthritis
 b) Grade I: Possible joint space narrowing and osteophyte formation
 c) Grade II: Definite osteophyte formation with possible joint space narrowing
 d) Grade III: Moderate multiple osteophytes, definite narrowing of joint space, some sclerosis and possible deformity of bone contour (*some sclerosis and cyst formation and deformity of femoral head and acetabulum*)
 e) Grade IV: Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone contour (*increased deformity of the femoral head and acetabulum*)

3) ***Tönnis Classification of Osteoarthritis by Radiographic Changes***
a) 0-No signs of osteoarthritis
b) 1-Mild: Increased sclerosis, slight narrowing of the joint space, no or slight loss of head sphericity
c) 2-Moderate: Small cysts, moderate narrowing of the joint space, moderate loss of head sphericity
d) 3-Severe: Large cysts, severe narrowing or obliteration of the joint space, severe deformity of the head

III. Hip Revision/Conversion Arthroplasty

a) Hip Revision/Conversion Arthroplasty may be considered medically necessary when a previous hip reconstruction meets the following criteria:

a) Extensive disease or damage due to fracture, malignancy, osteolysis, or other bone or soft-tissue reactive or destructive process confirmed by MRI or other advanced imaging. \textit{NOTE: MRI is used less often in these circumstances unless it is a metal-on-metal and looking for soft tissue lesions; }x-ray, CT, nuclear studies are used more frequently\textit{; OR}

b) Infected joint confirmed by synovial fluid aspiration (cell count and/or culture); OR

c) When all of the following are present:

i) Symptomatic hip arthroplasty where patient has persistent, severe disabling pain and loss of function for > 6 months; AND

ii) Unstable joint upon physical exam; AND

iii) Aseptic loosening, osteolysis, other bone or soft-tissue reactive or destructive process, inappropriate positioning of components, or other failure of fixation of components confirmed on imaging

IV. Additional Information:

a) \textit{Non-operative management may include one or more of the following modalities:}

a) Rest or activity modifications/limitations;

b) Weight reduction for patient with elevated BMI;

c) Protected weight-bearing with cane, walker or crutches;

d) Physical therapy modalities;

e) Supervised home exercise;

f) Pharmacologic treatment: oral/topical NSAIDS, acetaminophen, analgesics;

g) Injections: cortisone, viscosupplementation, PRP (platelet-rich plasma)

2) \textit{Non-Covered Services:}

a) The following procedures are not considered a covered service and are not reimbursable based on lack of current scientific evidence for clinically important
improvement, safety or efficacy; or based on scientific evidence of increased risk of serious complications:

i) Procedures utilizing computer-navigated or patient-specific or gender-specific instrumentation.

V. REFERENCES

arthroplasty: prevalence, time to fracture, and outcome after revision." The Journal of

28) McIntosh, Amy L., et al. "Recent intraarticular steroid injection may increase infection

29) Mota, Rubén EM, et al. "Determinants of demand for total hip and knee arthroplasty: a

30) Murphy, Donavan K., et al. "Treatment and displacement affect the reoperation rate for

implants in hip and knee replacement: a systematic review of five widely used device

32) Ng, Vincent Y., et al. "Preoperative Risk Stratification and Risk Reduction for Total
Joint ReconstructionAAOS Exhibit Selection." The Journal of Bone & Joint Surgery 95.4

resurfacing is associated with metallosis and soft-tissue necrosis." Journal of Bone &

34) Ollivier, Matthieu, et al. "Anatomy of the proximal femur at the time of total hip
arthroplasty is a matter of morphotype and etiology but not gender." Surgical and

35) Ong, Kevin L., et al. "Risk of subsequent revision after primary and revision total joint

osteoarthritis of the hip or knee: a randomized controlled trial comparing two different

38) Ravi, Bheeshma, et al. "Intraarticular hip injection and early revision surgery following
total hip arthroplasty: a retrospective cohort study." Arthritis & Rheumatology 67.1

39) Sansom, Anna, et al. "Routes to total joint replacement surgery: patients' and clinicians'

40) Schairer, William W., et al. "Preoperative Hip Injections Increase the Rate of

INTRODUCTION:

This guideline describes the indications for, and surgical uses of arthroscopy in the hip as well as open, non-arthroplasty hip repair procedures.

Arthroscopy introduces a fiberoptic camera into the hip joint (arthroscopy) and surrounding extra-articular areas (endoscopy) through a small incision for diagnostic purposes. Other tools may then be introduced to remove, repair, or reconstruct intra-articular and extra-articular pathology.

Surgical indications are based on relevant clinical symptoms, physical exam, radiologic findings, and response to non-operative, conservative management when medically appropriate.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

This guideline is structured with clinical indications outlined for each of the following applications:

I. Diagnostic arthroscopy
II. Femoroacetabular Impingement (FAI)
 1) Labral Repair Only
 2) CAM, Pincer, CAM & Pincer combined
III. Synovectomy, Biopsy, or Removal of Loose or Foreign Body
IV. Chondroplasty or abrasion for Chondral injuries, chondromalacia
V. Extra-articular (Endoscopic) Hip Surgery

CLINICAL INDICATIONS:

I. Diagnostic Hip Arthroscopy

All requests for diagnostic hip arthroscopy will be considered and decided on a case-by-case basis.

II. Femoroacetabular Impingement (FAI)

FAI is a condition characterized by a mechanical conflict between the femur (cam) and/or acetabulum (pincer) that may result in labral injury (labral tear) or articular cartilage injury (chondral defect, arthritis). Up to 95% of labral tears are observed in the presence of FAI. Thus, “isolated” labral tears are very uncommon. Labral tears are infrequently traumatic (<5%). There is no evidence to support hip arthroscopy for FAI and/or labral tear in an asymptomatic subject.
1) Labral Repair

Arthroscopic labral repair may be medically necessary when ALL of the following criteria are met:

a) Hip or groin pain in positions of flexion and rotation that may be associated with mechanical symptoms of locking, popping, or catching; AND
b) Positive provocative test on physical exam with pain at the hip joint with flexion, adduction, and internal rotation; AND
c) Acetabular labral tear by MRI, with or without intra-articular contrast; AND
d) Symptoms not improved with at least 6 weeks of conservative, non-operative care*, AND
e) No evidence of hip joint arthritis, defined as a Tönnis Grade 2 or 3 (joint space less than 2 millimeters) on weight-bearing AP radiograph; AND
f) Patient is less than age 50.

NOTE: Arthroscopy of the hip for acetabular labral or repair is considered not medically necessary in the presence of significant hip joint arthritis (Tonnis grade II or greater)**, dysplasia*** or other structural abnormality that would require skeletal correction.

***Dysplasia defined as:
- Lateral center edge angle <20 degrees; OR
- Anterior center edge angle <20 degrees; OR
- Tönnis angle >15 degrees; OR
- Femoral head extrusion index >25%

2) CAM, Pincer, Combined CAM & Pincer Repair

Technically not a repair, this procedure involves bony decompression, shaving, osteoplasty, femoroplasty, acetabuloplasty, and/or osteochondroplasty. Greater than 95% of labral repairs should be performed with at least a femoral osteoplasty or an acetabuloplasty.

Arthroscopic CAM, Pincer or combined CAM and Pincer repair may be medically necessary when ALL of the following criteria are met:

a) Positional hip pain for at least 6 weeks not improved with conservative, non-operative care*; AND
b) Positive impingement sign on physical exam (hip or groin pain with flexion, adduction and internal rotation; or extension and external rotation); AND
c) One of the following radiograph, CT and/or MRI findings of FAI:
 i. Nonspherical femoral head or prominent head-neck junction (pistol-grip deformity) with alpha angle >55 degrees indicating CAM impingement; OR
ii. Overhang of the anterolateral rim of the acetabulum, posterior wall sign, prominent ischial spine sign, acetabular protrusion, or retroversion with a center edge (CE) angle >35° and/or cross-over sign indicating pincer deformity; OR

iii. Combination of CAM and pincer criteria; AND

 d) No evidence of significant hip joint arthritis; AND
 e) Skeletally mature patient, AND
 f) Under age < 50 years old; AND
 g) BMI < 40; AND
 h) Radiographic images show no evidence of ANY of the following indicators for hip dysplasia:

 i. Lateral center edge angle <20°; OR
 ii. Anterior center edge angle <20°; OR
 iii. Tonnis angle >15°; OR
 iv. Femoral head extrusion index >25%

NOTE: Arthroscopy of the hip for FAI is considered not medically necessary or contraindicated in the presence of significant hip joint arthritis (Tonnis grade II or greater)***, the skeletally immature patient (open proximal femoral physis), age > 50 years, or BMI >40. Requests meeting any of these criteria will be reviewed on a case by case basis.

III. Arthroscopy for Synovectomy, Biopsy, or Removal of Loose or Foreign Body

Arthroscopic synovectomy, biopsy, removal of loose or foreign body, or a combination of these procedures may be medically necessary when the following criteria are met:

- Radiographic evidence of acute post-traumatic intra-articular foreign body or displaced fracture fragment;

OR

- When ALL of the following criteria are met:

 a) Hip pain associated with grinding, catching, locking, or popping for at least 12 weeks not improved with conservative, non-operative care*; AND
 b) Physical exam finding confirms painful hip with limited range of hip motion; AND
 c) Radiographs, CT and/or MRI with synovial proliferation, calcifications, nodularity, inflammation, pannus, loose body

IV. Shaving or debridement of articular cartilage (chondroplasty), and/or abrasion arthroplasty

1) There are no clinical indications for performing an independent debridement procedure within the hip. Debridement should always be combined or secondary to another procedure, and is primary performed within FAI procedures.

2) All requests will be considered and decided on a case-by-case basis.
V. Extra-articular (Endoscopic) Hip Surgery

Arthroscopy for extra-articular hip pathology is recognized as a less invasive adjunctive tool to correct or minimize symptoms of structural pathology, but is not supported in current high level evidence-based literature.

Use of this technology for these applications will be decided on a case-by-case basis.

Extra-articular hip applications may be used to minimize symptoms of internal snapping hip (internal coxa saltans, iliopsoas tendonitis, snapping iliopsoas), iliopsoas tendon at iliopsoacetal eminence or anterior inferior iliac spine, external snapping hip (external coxa saltans, snapping iliotibial band, iliotibial band at greater trochanter). May also include proximal hamstring endoscopy for partial tear of proximal hamstring with or without bursitis or proximal hamstring, sciatic neurolysis, ischiofemoral decompression (for ischiofemoral impingement), or anterior inferior iliac spine (subspine) decompression for subspine impingement (3 types of anterior inferior iliac spine:

- Type 1: small, tip does not extend to sourcil;
- Type 2: medium, tip extends down to sourcil;
- Type 3: large, tip extends down below sourcil.

Type 3 should have surgical decompression. Most type 2 should have surgical decompression. Type 1 should never need surgical decompression.

1) Activity related painful snapping sensation around the hip joint caused by the iliotibial tract over the greater trochanter or bursa (external snapping hip) and/or the iliopsoas tendon over medial bony prominence or bursa (internal snapping hip) unresponsive to non-operative care; OR

2) Activity related pain and tenderness at the greater or lesser trochanter due to bursal inflammation, tendinosis and/or tendinitis, or tear of the tendon (gluteus medius or minimus) unresponsive to non-operative care; AND

3) At least 6 months of non-operative care* that may include activity modification, supervised physical therapy, NSAIDS, and/or corticosteroid injection; AND

4) Physical exam findings align with patient symptoms and have at least one or more of the following:

 a) Limp or painful ambulation
 b) Tenderness and/or crepitus to palpation
 c) Visible, audible, or palpable snapping at the greater trochanter or pelvic brim
 d) Pain and/or weakness with active or resisted motion of the hip
 e) Pain relief with diagnostic local anesthetic injection
VI. Additional Information:

1) *Non-Operative Treatment:*
 a) Throughout this document, conservative, non-operative care* is defined as a combination of two or more of the following:
 b) Rest or activity modifications/limitations;
 c) Ice/heat;
 d) Protected weight bearing;
 e) Pharmacologic treatment: oral/topical NSAIDS, acetaminophen, analgesics;
 f) Brace/orthosis;
 g) Physical therapy modalities;
 h) Supervised home exercise;
 i) Weight optimization;
 j) Injections: cortisone/viscosupplementation/PRP (Platelet-rich plasma)

2) **Tönnis Classification of Osteoarthritis by Radiographic Changes**
 a. Grade 0 No signs of osteoarthritis
 b. Grade 1 Mild: Increased sclerosis, slight narrowing of the joint space, no or slight loss of head sphericity
 c. Grade 2 Moderate: Small cysts, moderate narrowing of the joint space, moderate loss of head sphericity
 d. Grade 3 Severe: Large cysts, severe narrowing or obliteration of the joint space, severe deformity of the head

VII. Additional Notes:

1) A very high prevalence of abnormal radiographs is found in asymptomatic patients.
 a. 33% of asymptomatic hips have a cam
 b. 66% of asymptomatic hips have a pincer
 c. 68% of asymptomatic hips have a labral tear
2) FAI and labral tears are precursors to hip arthritis
3) Dysplasia is precursor to hip arthritis
4) Arthroscopy is never indicated for treatment of osteoarthritis within the hip
5) Rarely (if ever) arthroscopy for dysplasia

VIII. REFERENCES

INTRODUCTION:
Arthroplasty describes the surgical replacement or reconstruction of a joint with implanted devices when the joint has been damaged by an arthritic or traumatic process. This guideline outlines the clinical indications for three types of knee arthroplasty procedures: total, partial/unicompartmental, and revision arthroplasty.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

This guideline is structured with clinical indications outlined for each of the following applications: Total Knee Arthroplasty (TKA), Unilateral Knee Arthroplasty (UKA), and Revision Arthroplasty.

A. Total Knee Arthroplasty (TKA)
Total Knee Arthroplasty (TKA) describes reconstruction of all articular joint surfaces.

1) TKA may be considered medically necessary for treatment of the following knee joint pathology:
 a) Extensive disease or damage due to rheumatoid arthritis, fracture, or avascular necrosis confirmed by imaging (radiographs, MRI or other advanced imaging); AND
 b) Patient has pain and documented loss of function (no indication to perform TKA in patient with severe disease and no symptoms);

 OR

c) When ALL of the following criteria are met:
 i) Pain that is persistent and severe and/or patient has documented loss of function that has been present for at least 6 months resulting in a diminished quality of life; AND
 ii) At least 3 months of non-operative care* that has failed to improve symptoms.

 Non-operative care should include at least two or more of the following:
 I. Rest or activity modifications/limitations;
 II. Weight reduction for patient with elevated BMI;
 III. Protected weight-bearing with cane, walker or crutches;
 IV. Physical therapy modalities;
 V. Supervised home exercise;
VI. Pharmacologic treatment: oral/topical NSAIDS, acetaminophen, analgesics;

VII. Brace/orthosis;

VIII. Injections: cortisone/viscosupplementation/PRP (platelet rich plasma);

AND
d) Physical exam findings demonstrate one or more of the following: tenderness, swelling/effusion, limited range of motion (decreased from uninvolved side or as compared to a normal joint), flexion contracture, palpable or audible crepitus, instability and/or angular deformity: AND
e) Radiographic findings show evidence of bicompartamental or tricompartmental advanced arthritic changes, documented by standing, weight-bearing radiographs described as Kellgren-Lawrence (K-L)** stage III or stage IV degeneration (NOTE: MRI should not be the primary tool used to determine the presence or severity of arthritic changes in the joint): AND
f) No injection into the joint within 3 months of surgery.

NOTE: All requests for simultaneous bilateral total knee replacements will be reviewed on a case by case basis.

g) All requests for TKA in patients with chronic, painless effusion and extensive radiographic arthritis will be evaluated on a case-by-case basis.

Kellgren-Lawrence Grading System:

Grade 0: No radiographic features of osteoarthritis
Grade I: Possible joint space narrowing and osteophyte formation
Grade II: Definite osteophyte formation with possible joint space narrowing
Grade III: Moderate multiple osteophytes, definite narrowing of joint space, some sclerosis and possible deformity of bone contour
Grade IV: Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone contour;

2) **Contraindications**:
 a) Absolute contraindication:
 i) Active infection (local or remote)
 ii) Any injection into the joint within 3 months of surgery

 b) Relative contraindication: Any of the following:
 i) Prior infection at site (unless aspiration with cultures and serology [CBC with differential, ESR, CRP] demonstrates no infection). If prior infection at site, tissue biopsies should be sent intra-operatively to exclude latent/dormant infection.
 ii) Extreme morbid obesity (BMI > 40)
iii) Extensor mechanism deficiency
iv) Neuropathic joint
v) Severe peripheral vascular disease
vi) Compromised soft tissue envelope
vii) Uncontrolled comorbidities

B. Unicompartmental Knee Arthroplasty (UKA)/Partial Knee Replacement (PKA)

Unicompartmental knee arthroplasty (UKA) is also called partial, hemi- or unicompartmental knee, bicondylar knee arthroplasty, and involves reconstruction of either the medial (more common than lateral) or lateral weight bearing compartment of the knee and/or patellofemoral joint

1) UKA/PKA may be medically necessary when ALL of the following criteria are met:
 • Pain localized to the medial or lateral compartment is present for at least 6 months; AND
 • At least 3 months of non-operative care that has failed to improve symptoms.
 *Non-operative care should include at least two or more of the following:
 i) Rest or activity modifications/limitations;
 ii) Weight optimization;
 iii) Protected weight-bearing with cane, walker or crutches;
 iv) Physical therapy modalities;
 v) Supervised home exercise;
 vi) Pharmacologic treatment: oral/topical NSAIDS, acetaminophen, analgesics;
 vii) Brace/orthosis;
 viii) Injections: cortisone/viscosupplementation/PRP (platelet rich plasma); AND
 • Total arc of motion (goniometer) > 90 degrees; AND
 • Normal ACL or stable reconstructed ACL per physical exam test; AND
 • Age > 50 years; AND
 • Radiographic findings demonstrate only unicompartmental disease (with or without patellofemoral involvement) with evidence of degeneration equal to K-L* Grade 3 or 4 (NOTE: MRI should not be the primary tool used to determine the presence or severity of arthritic changes in the joint); AND
 • Contracture < 5-10 degrees upon physical exam (goniometer); AND
 • Angular deformity < 10 passively correctable to neutral upon physical exam (goniometer); AND
 • BMI < 40; AND
 • No injection into the joint within 3 months of surgery.

NOTE: All requests for UKA in patients with chronic, painless effusion and extensive radiographic arthritis will be evaluated on a case-by-case basis.

Kellgren-Lawrence Grading System:

Grade 0: No radiographic features of osteoarthritis
Grade I: Possible joint space narrowing and osteophyte formation
Grade II: Definite osteophyte formation with possible joint space narrowing
Grade III: Moderate multiple osteophytes, definite narrowing of joint space, some sclerosis and possible deformity of bone contour
Grade IV: Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone contour

Outerbridge Arthroscopic Grading System

Grade 0 Normal cartilage
Grade I Softening and swelling
Grade II Partial thickness defect, fissures < 1.5cm diameter
Grade III Fissures down to subchondral bone, diameter > 1.5cm
Grade IV Exposed subchondral bone

2) Contraindications:
 o Any injection into the joint within 3 months of surgery
 o Local or systemic active infection
 o Inflammatory arthritis
 o Angular deformity or contracture greater than indicated range
 o Significant arthritic involvement of other knee compartments
 o Ligamentous instability (at least ACL [anterior cruciate ligament])
 o Poor bone quality or significant osteoporosis or osteopenia
 o Meniscectomy of the opposite compartment
 o Stiffness greater than indicated range of motion

C. Revision Arthroplasty

Revision describes surgical reconstruction due to failure or complication of a previous arthroplasty.

1) Revision TKA may be considered medically necessary when the following criteria are met:
 a) Previous UKA/PKA or TKA joint; AND
 b) Infection ruled out by synovial fluid aspiration/biopsy (cell count and/or culture) AND off antibiotics; OR
 c) When ALL of the following criteria are met:
 i) Symptomatic UKA/PKA or TKA as evidence by persistent, severe disabling pain and loss of function; AND
 ii) Any of the following upon physical exam: tenderness to palpation objectively attributable to the implant, swelling or effusion, pain on weight-bearing or motion, instability on stress-testing, abnormal or limited motion compared to
usual function), palpable or audible crepitus associated with reproducible pain; AND

iii) Aseptic loosening, osteolysis confirmed on radiographic or advanced imaging (nuclear medicine bone scan, CT scan, MRD); AND

d) No injection into the joint within 3 months of surgery;

2) Contraindications:
 a) Absolute contraindication:
 i) Local or systemic active infection
 ii) Any injection into the joint within 3 months of surgery

 b) Relative contraindication: Any of the following:
 i) Deficiency of the extensor mechanism
 ii) Neuropathic joint
 iii) Unstable or poorly controlled comorbidities
 iv) Severe peripheral vascular disease
 v) Compromised soft-tissue envelope (revision may be performed in conjunction with plastic surgical consultation for soft tissue coverage via pedicle flaps or other acceptable procedure)

D. Non-Covered Services:
 1) The following procedures are not considered a covered service and are not reimbursable based on lack of current scientific evidence for clinically important improvement, safety or efficacy; or based on scientific evidence of increased risk of serious complications:
 I. Procedures utilizing computer-navigated or patient-specific or gender-specific instrumentation
 II. Bicompartmental arthroplasty (investigational at this time)
 III. Robot-assisted TKA (Makoplasty)

V. Other issues:
 1) Manipulation following total knee arthroplasty:
 a) Nonsurgical treatment is initial treatment
 b) However, manipulation is indicated if within 3 months from time of primary arthroplasty if physical therapy is unable to improve motion to satisfactory degree
 i) If cause of arthrofibrosis/stiffness is due to technical error (component malpositioning or inappropriate sizing), then surgical revision arthroplasty is indicated
 ii) If cause of arthrofibrosis/stiffness is due to adhesions/capsular contraction, then either arthroscopic or open lysis of adhesions is indicated

 2) Poor dental hygiene (e.g. tooth extraction should be performed prior to arthroplasty). Major dental work within 2 year after a joint replacement MAY lead to seeding of the implant and possible revision surgery. If possible, all dental work must be completed prior to shoulder
arthroplasty as these procedures increase risk for infection. Following surgery, patients should receive antibiotics for routine dental check-ups for a minimum of two years.

VI. REFERENCES

INTRODUCTION:

This guideline describes surgical indications of both arthroscopy as well as open, non-arthroplasty knee surgery. Also included are indications for knee manipulation. Arthroscopy introduces a fiberoptic camera into the knee joint through a small incision for diagnostic visualization purposes. Other instruments may then be introduced to remove, repair, or reconstruct intra- and extra-articular joint pathology. Surgical indications are based on relevant subjective clinical symptoms, objective physical exam and radiologic findings, and response to previous non-operative treatments when medically appropriate. Open, non-arthroplasty knee surgeries are performed instead of an arthroscopy as dictated by the type and severity of injury and/or disease and surgeon skill/experience.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

This guideline is structured with clinical indications outlined for each of the following applications:

Arthroscopic:

I. Diagnostic knee arthroscopy
II. Debridement with or without chondroplasty
III. Meniscectomy meniscal repair meniscal transplant
IV. Ligament reconstruction repair
 1) Anterior cruciate ligament (ACL) reconstruction
 2) Posterior cruciate ligament (PCL) reconstruction
 3) Collateral ligament repair
V. Articular cartilage restoration repair
 1) Marrow stimulating techniques microfracture drilling abrasion chondroplasty augmented marrow-stimulation [BioCartilage]
 2) Restorative techniques osteochondral autograft transfer system (OATS), mosaicplasty autologous chondrocyte implantation (ACI), osteochondral allograft implantation minced articular cartilage allograft transplantation [DeNovo NT]
VI. Synovectomy major 2 compartments minor 1 compartment
VII. Loose body removal
VIII. Lateral release\patellar realignment
IX. Manipulation under anesthesia (MUA)
X. Lysis of adhesions for arthrofibrosis of the knee

Non-operative Treatment:
Throughout this document non-operative care* is defined as a combination of **two** or more of the following:
1) Rest or activity modifications/limitations;
2) Ice/heat;
3) Protected weight bearing;
4) Pharmacologic treatment: oral/topical NSAIDS, acetaminophen, analgesics, tramadol
5) Brace/orthosis;
6) Physical therapy modalities;
7) Supervised home exercise;
8) Weight optimization;
9) Injections: cortisone, viscosupplementation, platelet rich plasma (PRP)

Kellgren-Lawrence Grading System:
1) Grade 0: No radiographic features of osteoarthritis
2) Grade I: Doubtful joint space narrowing and possible osteophytic lipping
3) Grade II: Definite osteophyte formation with possible joint space narrowing on anteroposterior weight-bearing radiograph
4) Grade III: Multiple osteophytes, definite narrowing of joint space, some sclerosis and possible bony deformity
5) Grade IV: Large osteophytes, marked narrowing of joint space, severe sclerosis and definite bony deformity

Outerbridge Arthroscopic Grading System
1) Grade 0: Normal cartilage
2) Grade I: Softening and swelling/blistering
3) Grade II: Partial thickness defect, fissures < 1.5cm diameter/wide
4) Grade III: Fissures /defects down to subchondral bone with intact calcified cartilage layer, diameter > 1.5cm
5) Grade IV: Exposed subchondral bone

****The International Cartilage Research Society (ICRS)****
1) Grade 0: Normal cartilage
2) Grade I: Nearly normal. Superficial lesions.
a) Soft indentation
b) And/or superficial fissures and cracks

3) Grade II: Abnormal. Lesions extending down to <50% of cartilage depth

4) Grade III: Severely abnormal
 a) Cartilage defects extending down >50% of cartilage depth
 b) And down to calcified layer
 c) And down to, but not through the subchondral bone
 d) And blisters

5) Grade IV: Severely abnormal (through the subchondral bone)
 a) Penetration of subchondral bone but not across entire diameter of defect
 b) Penetration of subchondral bone across the full diameter of the defect

Note: MRI should not be the primary tool used to determine the presence or severity of arthritic changes in the joint.

CLINICAL INDICATIONS:

I. **Diagnostic Knee Arthroscopy**
 1) Diagnostic knee arthroscopy may be medically necessary when ALL of the following criteria are met:
 a) At least 3 months of knee pain with documented loss of function (deviation from normal knee function which may include painful weight bearing, unstable articulation, and/or inadequate range of motion (>10 degrees flexion contracture or <90 degrees flexion or both) to accomplish activities of daily living (ADLs), recreational activity, and/or employment (documentation of missed days of work or modifications of work status due to injury/pain)); AND
 b) At least 12 weeks of non-operative care* that has failed to improve symptoms; AND
 c) Clinical documentation of painful weight bearing, joint line tenderness, effusion and/or limited motion compared to presymptomatic joint range; AND
 d) Indeterminate radiographs AND MRI findings.

II. **Debridement with or without Chondroplasty**
 1) Debridement may be medically necessary when ALL of the following criteria are met:
 a) Knee pain with documented loss of function (deviation from normal knee function which may include painful weight bearing, unstable articulation, and/or inadequate range of motion (>10 degrees flexion contracture or <90 degrees flexion or both) to accomplish activities of daily living (ADLs) and/or employment (documentation of missed days of work or modifications of work status due to injury/pain)); AND
b) At least 12 weeks of non-operative care* that has failed to improve symptoms; AND

c) MRI results showing evidence of unstable chondral flap; AND
 i) Recurrent (more than 2) or persistent effusion(s):

 OR

 d) Arthrofibrosis as evidence by physical exam findings of painful stiffness and loss of motion due to proliferation of scar tissue in and around the joint. *NOTE: Imaging is not necessary, but historically has been used to determine the diagnosis*; AND

 e) At least 6 weeks of supervised or self-directed physical therapy that has failed to improve symptoms.

 OR

2) Debridement chondroplasty for patellofemoral chondrosis when ALL of the following criteria are met:

 a) Anterior knee pain and loss of function (deviation from normal pain-free weight bearing, stable articulation, and/or range of motion to accomplish activities of daily living (ADLs) and/or employment); AND

 b) Other extra-articular or intra-articular sources of pain or dysfunction have been excluded (referred pain, radicular pain, tendinitis, bursitis, neuroma); AND

 c) Physical exam localizes tenderness to the patellofemoral joint with pain aggravated by activities that load the joint (single leg squat, ascending >descending stairs, and being in seated position for extended periods of time with knee flexed); AND

 d) Imaging (radiographs, MRI, or CT to measure tibial tubercle—trochlear groove distance)

 e) At least 12 weeks of non-operative care has failed to improve symptoms; AND

 f) No evidence of osteoarthritis (Kellgren-Lawrence** Grade 3-4 based on standing or weight-bearing radiographs and patellofemoral views))

 *NOTE: arthroscopic debridement with or without chondroplasty for osteoarthritis of the knee is considered NOT MEDICALLY NECESSARY unless above criteria noted.

III. **Meniscectomy/Meniscal Repair/Meniscal Transplant**

 1) Meniscectomy and/or meniscal repair may be medically necessary when the following criteria are met:

 a) Symptomatic meniscal tear confirmed by MRI results that show a peripheral longitudinal tear in a vascular zone, associated with pain and mechanical symptoms upon physical exam:

 OR
b) Pediatric or adolescent patient has pain and mechanical symptoms upon physical exam; AND

c) MRI results show unstable tear;

OR

d) When at least 3 of the following 5 criteria are met:

i) History of "catching" or "locking" as reported by the patient;

ii) Knee joint line pain with forced hyperextension upon physical exam;

iii) Knee joint line pain with maximum flexion upon physical exam;

iv) Knee pain or an audible click with McMurray's maneuver upon physical exam;

v) Joint line tenderness to palpation upon physical exam: AND

e) At least 6 weeks of non-operative care* that has failed to improve symptoms: AND

f) One of the following radiographic findings:

i) Radiographic findings without moderate or severe osteoarthritic changes; OR

ii) MRI results confirm meniscal tear in patients < 30 years of age; OR

iii) MRI results confirm displaced tear (any age);

OR

g) Meniscus tear encountered during other medically necessary arthroscopic procedure

Meniscal Transplants may be medically necessary when the following criteria are met:

a) Patient is less than 40 years old; AND

b) Patient has no evidence of arthritic changes; AND

c) Symptomatic meniscal deficiency confirmed by MRI results that show a meniscal deficient compartment, OR previous arthroscopy photographs or video showing subtotal or total meniscectomy; AND

d) At least 6 weeks of non-operative care* that has failed to improve symptoms;

2) Contraindications:

a) Meniscal transplant absolute contraindications

i) Uncorrected (staged or simultaneous) ligamentous insufficiency (ACL, PCL, MCL, LCL, PMC, PLC)

ii) Uncorrected (staged or simultaneous) malalignment greater than 5 degrees varus or 5 degrees valgus

iii) Uncorrected (staged or simultaneous) full-thickness articular cartilage isolated defects (ICRS 3 or 4; Outerbridge 4)

iv) Kellgren-Lawrence Grade 3 or 4 osteoarthritis

b) Meniscectomy/Meniscal Repair Absolute Contraindications
i) Arthroscopic meniscectomy or meniscal repair is never medically necessary in the presence of Kellgren-Lawrence Grade 4 osteoarthritis.

c) Meniscectomy/Meniscal Repair Relative Contraindications

i) Meniscectomy or repair is considered NOT MEDICALLY NECESSARY in the presence of Kellgren-Lawrence Grade 3 osteoarthritis unless acute onset with effusion, locking (note: locking only. This does not include catching, popping, cracking), and MRI evidence of bucket-handle or displaced meniscal fragment that correlates with the correct compartment (i.e. medial tenderness and locking for a medial tear).

ii) If grade 3 changes are present, only a meniscectomy may be indicated, not repair. If evidence of meniscal extrusion on coronal MRI with/without subchondral edema, arthroscopy is relatively contraindicated, even if tear is present.

iii) BMI > 35

IV. Ligament Reconstruction/Repair

1) Anterior Cruciate Ligament (ACL) Reconstruction with Allograft or Autograft:

ACL reconstruction or repair may be medically necessary when ALL of the following criteria are met:

a) Knee instability (as defined subjectively as "giving way", "giving out", "buckling", two-fist sign) with clinical findings of instability: Lachman’s 1A, 1B, 2A, 2B, 3A, 3B, Anterior Drawer or Pivot Shift, instrumented (KT-1000 or KT-2000) laxity of greater than 3 mm side-side difference; AND

b) MRI results confirm complete ACL tear; AND

c) Patient has no evidence of severe arthritis (Kellgren-Lawrence** Grade 3 or 4) OR

d) When ONE of the following criteria are met:

i) MRI results confirm ACL tear associated with other ligamentous instability or repairable meniscus; OR

ii) MRI results confirm partial or complete ACL tear AND patient has persistent symptoms despite at least 12 weeks of non-operative care*; OR

iii) Acute ACL tear confirmed by MRI in high demand occupation or competitive athlete (as quantified by Marx activity score for athletics (any score greater than 4) and Tegner activity score for athletics and/or occupation (score greater than 2); AND

iv) Patient has no evidence of severe arthritis (Kellgren-Lawrence** Grade 3 or 4)

e) Tears in patients less than age 13 will be reviewed on a case by case basis.

2) Posterior Cruciate Ligament (PCL) Reconstruction:
PCL reconstruction or repair may be medically necessary when the following criteria are met:

a) Knee instability (as defined subjectively as "giving way", "giving out", "buckling", two-fist sign) with clinical findings of positive Posterior Drawer, posterior Sag, or quadriceps active, or Dial test at 90 degrees knee flexion, reverse pivot shift test; AND

b) MRI results confirm complete PCL tear; AND

c) Failed non-operative care (including bracing in full extension for acute PCL tears); AND

d) Absence of medial and patellofemoral K-L grade 3-4 changes in chronic tears; OR

e) The following clinical scenarios will be considered and decided on a case-by-case basis:
 i) pediatric and adolescent tears in patients with open physes or open growth plates
 ii) symptomatic partial tears with persistent instability despite non-operative care
 iii) incidental Kellgren-Lawrence Grade 2-3 osteoarthritis in acute/subacute tears with unstable joint
 iv) Tears in patients less than age 13

3) **Collateral Ligament Repair or Reconstruction:**

 a) Collateral ligament repair or reconstruction should rarely occur independent of additional repair or reconstruction surgery. All non-traumatic collateral ligament repair/reconstruction requests will be reviewed on a case by case basis.

V. **Articular Cartilage Restoration/Repair**

1) **Skeletally Immature Indications:**

 a) When ALL of the following criteria are met:
 i) Skeletally immature patient; AND
 ii) Patient is symptomatic (pain, swelling, mechanical symptoms of popping, locking, catching, or limited range of motion); AND
 iii) radiographic findings (any radiograph and MRI) of a displaced lesion;

 OR

 b) When ALL of the following criteria are met:
 i) Skeletally immature patient; AND
 ii) Patient is symptomatic (pain, swelling, mechanical symptoms of popping, locking, catching, or limited range of motion); AND
 iii) At least 12 weeks of non-operative care* has failed to improve symptoms; AND
iv) Radiographic findings (any radiograph and MRI) results finding of a stable osteochondral lesion

OR

c) When ALL of the following criteria are met:
i) Skeletally immature; AND
ii) Asymptomatic; AND
iii) At least 12 weeks of non-operative care has failed to improve lesion stability or size; AND
iv) Radiographic findings (any radiograph and MRI) results finding of an unstable osteochondral lesion
d) Exclusion (applies to all criteria above):
i) Exclude patients with evidence of meniscal deficiency and/or malalignment IF these are not being addressed (meniscal transplant and/or lateral release/patellar realignment procedure) at the same time as the cartilage restoration procedure.

2) Skeletally Mature Indications, Listed By Surgical Approach:
a) Reparative marrow stimulation techniques (microfracture & drilling. Abrasion arthroplasty is including in coding but is not indicated) may be medically necessary when ALL of the following criteria are met:
i) Skeletally mature adult; AND
ii) MRI confirms a full-thickness weight-bearing lesion that is < 2.5 sq.cm; AND
iii) Patient is symptomatic (pain, swelling, mechanical symptoms of popping, locking, catching, or limited range of motion); AND
iv) Patient is less than 50 years of age; AND
v) BMI < 35 (optimal outcomes if patient BMI <30); AND
vi) Physical exam findings and/or (imaging) results confirm knee has stable ligaments; AND
vii) No evidence of prior meniscectomy in same compartment (medial femoral condyle full thickness lesion and prior medial meniscectomy) unless concurrent meniscal transplant performed.

OR

b) Restorative techniques (abrasion arthroplasty, osteochondral autograft transfer or transplantation (OATS), mosaicplasty, autologous chondrocyte implantation (ACI), osteochondral allograft implantation, minced articular cartilage allograft transplantation [DeNovo NT]) may be medically necessary when ALL of the following criteria are met:
i) Skeletally mature adult; AND
ii) MRI results confirm a full thickness chondral or osteochondral lesion of the femoral condyles or trochlea > 2.5 cm; AND

iii) Patient is less than 50 years of age; AND

iv) Patient has been symptomatic (pain, swelling, mechanical symptoms of popping, locking, catching, or limited range of motion) for at least 6 months; AND

v) At least 6 months of non-operative care* has failed to improve symptoms; AND

vi) MRI and/or physical findings confirm knee has normal alignment as defined as +/- 3 degrees from neutral on full-length mechanical axis long-leg x-ray (unless concurrent or staged tibial or femoral osteotomy performed) and stability (unless concurrent ligamentous repair or reconstruction performed); AND

vii) BMI < 35 (optimal outcomes if patient BMI <30); AND

viii) MRI shows no evidence of significant osteoarthritis (greater than Kellgren-Lawrence Grade 2); AND

ix) No prior meniscectomy in same compartment (unless concurrent or staged meniscal transplant performed)

OR

c) Surgical intervention for the treatment of patellofemoral chondrosis (osteochondral autograft transfer or transplantation (OATS), microfracture, autologous chondrocyte implantation (ACI), osteochondral allograft implantation, minced articular cartilage allograft transplantation [DeNovo NT], debridement chondroplasty, tibial tubercle osteotomy) may be medically necessary when ALL of the following criteria are met:

i) Anterior knee pain and loss of function (deviation from normal knee function which may include painful weight bearing, unstable articulation, and/or inadequate range of motion (>10 degrees flexion contracture or <90 degrees flexion or both) to accomplish activities of daily living (ADLs), recreational activity, and/or employment (documentation of missed days of work or modifications of work status due to injury/pain)); AND

ii) Other extra-articular or intra-articular sources of pain or dysfunction have been excluded (referred pain, radicular pain, tendinitis, bursitis, neuroma); AND

iii) Physical exam localizes tenderness to the patellofemoral joint with pain aggravated by activities that load the joint (single leg squat, descending > ascending stairs or stair climbing, and being in seated position for extended periods of time with knee flexed); AND

iv) Radiologic imaging shows patellofemoral chondrosis graded 3 or 4 by the Outerbridge Classification*** or ICRS**** (grade 3-4) classification

v) At least 6 months of non-operative care has failed to improve symptoms; AND

vi) No evidence of osteoarthritis (Kellgren-Lawrence** Grade 3-4 based on standing or weight-bearing radiographs)) in the medial/lateral compartments

VI. Synovectomy (major [2+ compartments], minor [1 compartment])
1) Synovectomy may be medically necessary when ALL of the following criteria are met:
 a) Proliferative rheumatoid synovium (in patients with established rheumatoid arthritis according to the American College of Rheumatology Guidelines listed below): AND
 b) Not responsive to disease modifying drug (DMARD) therapy for at least 6 months and at least 6 weeks of non-operative care that has failed to improve symptoms; AND
 c) At least one instance of aspiration of joint effusion and cortisone injection (if no evidence of infection);
 OR
 d) Hemarthrosis from injury, coagulopathy or bleeding disorder confirmed by physical exam, joint aspiration, and/or MRI;
 OR
 e) Proliferative pigmented villonodular synovitis, synovial chondromatosis, sarcoid synovitis, or similar proliferative synovial disease, traumatic hypertrophic synovitis confirmed by history, MRI or biopsy; AND
 f) At least 6 weeks of non-operative care* that has failed to improve symptoms; AND
 g) At least one instance of aspiration of joint effusion and injection of cortisone (if no evidence of infection);
 OR
 h) Detection of painful plica confirmed by physical exam and MRI findings; AND
 i) At least 12 weeks of non-operative care* that has failed to improve symptoms.
 j) At least one instance of aspiration of joint effusion OR single injection of cortisone (effusion may not be present with symptomatic plica);

American College of Rheumatology Guidelines

<table>
<thead>
<tr>
<th>2010 ACR/EULAR: Classification Criteria for RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOINT DISTRIBUTION (0-5)</td>
</tr>
<tr>
<td>1 large joint</td>
</tr>
<tr>
<td>2-10 large joints</td>
</tr>
<tr>
<td>1-3 small joints (large joints not counted)</td>
</tr>
<tr>
<td>4-10 small joints (large joints not counted)</td>
</tr>
<tr>
<td>>10 joints (at least one small joint)</td>
</tr>
<tr>
<td>SEROLOGY (0-3)</td>
</tr>
<tr>
<td>Negative RF AND negative ACPA</td>
</tr>
</tbody>
</table>

VII. **Loose Body Removal**

1) Loose body removal may be medically necessary when the following criteria are met:

a) Removal of loose body or foreign object that causes limitation or loss of function (deviation from normal knee function which may include painful weight bearing, unstable articulation, and/or inadequate range of motion (>10 degrees flexion contracture or <90 degrees flexion or both) to accomplish activities of daily living (ADLs), recreational activity, and/or employment (documentation of missed days of work or modifications of work status due to injury/pain)).

VIII. **Lateral Release/Patellar Realignment:**

This guideline describes indications for surgical procedures to address patellofemoral pain disorders and abnormal alignment of the extensor mechanism of the knee by arthroscopic and/or open surgical techniques. Surgical indications are based on relevant clinical symptoms, physical exam, radiologic findings, and response to non-operative management when medically appropriate.

1) Surgical intervention for the treatment of lateral patellar compression syndrome is indicated when the following criteria are met:

a) Evidence of lateral patellar tilt from radiologic images (patellofemoral view: Mercer merchant (45 degrees flexion; and/or skyline (60-90 degrees flexion); and/or sunrise (60-90 degrees flexion); AND

b) Associated lateral patella facet K-L changes grade 1, 2, or 3; AND

c) Reproducible isolated lateral patellofemoral pain with patellar tile test; AND

d) At least 6 months of non-operative care* has failed to improve symptoms including appropriate hamstring/IT band stretching and patellar mobilization techniques; AND

| Low positive RF OR low positive ACPA | 2 |
| High positive RF OR high positive ACPA | 3 |

SYMPTOM DURATION (0-1)

| <6 weeks | 0 |
| ≥6 weeks | 1 |

ACUTE PHASE REACTANTS (0-1)

| Normal CRP AND normal ESR | 0 |
| Abnormal CRP OR abnormal ESR | 1 |

≥6 = definite RA
e) No evidence of patellar dislocation without documented patellar tilt; AND
f) No evidence of medial patellofemoral changes (Kellgren-Lawrence Grade 2 osteoarthritis or higher);

2) Surgical intervention for the treatment of **patellar malalignment and/or patellar instability** is indicated when the following criteria are met:
 a) Acute traumatic patellar dislocation is associated with an osteochondral fracture, loose body, vastus medialis obliquus/Medial patellofemoral ligament muscle avulsion, or other intra-articular injury that requires urgent operative management;
 OR
 b) Repeat (greater than 2) patellar dislocations or subluxations have occurred despite 6 months of non-operative care* with radiologic confirmation of MPFL (medial patellofemoral ligament) deficiency;
 OR
 c) Physical exam has patellofemoral tenderness and abnormal articulation of the patella in the femoral trochlear groove (patellar apprehension with positive J sign); AND
d) Radiologic images rule out fracture or loose body, and show abnormal articulation, trochlear dysplasia, or other abnormality related to malalignment; AND
e) CT scan or MRI rules out other abnormality to malalignment (tibial tubercle-trochlear groove (TT-TG) distance > 20 millimeters); AND
f) At least 6 months of non-operative care* has failed to improve symptoms

IX. **Manipulation under Anesthesia (MUA)**
 1) Manipulation under anesthesia (MUA) may be indicated when the following criteria are met:
 a) Physical exam findings demonstrate inadequate range of motion of the knee defined as less than 105 degrees of flexion; AND
 b) Failure to improve range of motion of the knee despite 6 weeks (12 visits) of documented physical therapy; AND
 c) Patient is less than 12 weeks after ligamentous or joint reconstruction.
 2) **Lysis of Adhesions for Arthrofibrosis of the knee**
 Surgical indications are based on relevant clinical symptoms, physical exam, radiologic findings, time from primary surgery, and response to conservative management when medically appropriate. Improved range of motion may be accomplished through arthroscopically-assisted or open lysis of adhesions with general anesthesia, regional anesthesia, or sedation.
a) Physical exam findings demonstrate inadequate range of motion of the knee, defined as less than 105 degrees of flexion; AND
b) Failure to improve range of motion of the knee despite 6 weeks (12 visits) of documented physical therapy; AND
c) Patient is more than 12 weeks after ligamentous or joint reconstruction, or resolved infection; OR
d) Patient is more than 12 weeks after trauma, or resolved infection; AND
e) Patient has native knee; AND
f) Manipulation under anesthesia is also performed

X. REFERENCES

CPT Codes: 23473, 23474, 23472, 23470

Overview:
Arthroplasty describes the surgical replacement or reconstruction of a joint with implanted devices when the joint has been damaged by an arthritic or traumatic process. This guideline outlines the clinical indications for shoulder arthroplasty procedures: total, partial/unicompartmental, reverse shoulder, and revision arthroplasty.

This guideline is structured with clinical indications outlined for each of the following applications:
I. Total Shoulder Arthroplasty (TSA)
II. Hemi-Arthroplasty
III. Reverse Arthroplasty (RTSA)
IV. Revision Arthroplasty

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

Clinical Notes
Total shoulder arthroplasty (TSA) is the most predictable of the arthroplasty procedures and is the “gold standard” but is dependent upon patient age. Stemmed hemiarthroplasty is most often used by non-specialist surgeons and has less successful outcomes. Resurfacing is an option for younger, more active and high demand patients but is only performed in high volume by very few surgeons in the US. It has good longevity with proper patient selection. Stemmed hemiarthroplasty may be accompanied by non-prosthetic glenoid arthroplasty. This involves contouring the glenoid fossa to allow for more anatomical congruity between humeral head and the glenoid and, thus, more anatomical kinematics and shoulder function without the risk of a prosthetic glenoid implant ("ream and run" glenoid or meniscal allograft transposition). It is a technically demanding procedure and requires increased skill, expertise and experience. Biological resurfacing of the glenoid may be considered but generally has fallen out of favor due to high failure rates over mid-term follow-up. Biological resurfacing of the glenoid should be a case-by-case analysis.

CLINICAL INDICATIONS
I. TOTAL SHOULDER ARTHROPLASTY (TSA)

The replacement of the glenohumeral joint is called a shoulder arthroplasty. It can be either a total shoulder arthroplasty (TSA), where both the glenoid and humerus are replaced, a partial arthroplasty of the humerus only (hemiarthroplasty, HA), or a partial resurfacing of the humerus (humeral head resurfacing, HHR, HR). In general, these arthroplasty procedures are reserved for end stage arthritis of the shoulder joint, including functional loss...
of motion, pain and disability. The choice of arthroplasty is dependent upon surgeon philosophy, experience and skill. Successful outcome, regardless of procedure, is more likely with high volume (> 20 per year) shoulder specialists. The most significant factor to a patient’ revision surgery is due to incorrect technique (the device was the wrong size or not inserted correctly or poor surgical exposure).

1) **Total Arthroplasty may be necessary when the following criteria are met:**

a) Evidence of painful osteoarthritis OR

b) Inflammatory, non-infectious arthritis (e.g. rheumatoid) with functional limitations (such as activities of daily living or employment or simple recreation) AND

c) Complete or near-complete loss of joint space on axillary and AP x-rays (internal rotation and/or external rotation); AND

d) 12 weeks of non-operative treatment* have failed to improve symptoms; AND

e) Adequate bone stock (sufficient bone available to place a glenoid component. Requires either a good axillary x-ray, or either a CT or MRI) to support chosen device; AND

f) Functional and intact rotator cuff and deltoid; AND

g) No injection into the joint within 3 months of surgery.

2) **NOTES**

a) In general, the more severe the disease, the more loss of motion and more glenoid erosion will exist and the more likely TSA will be required, regardless of age. However, if patients wait too long, it can be impossible to place the glenoid component (due to posterior glenoid erosion) in a TSA and outcomes are even worse for HA. For best patient outcomes, only one total shoulder arthroplasty should be performed in patient’s lifetime.

b) Additional research is necessary to support an accurate age range for each type of shoulder arthroplasty. At this time, patient age is a relative indication for surgery and ultimately relies on surgeon’s judgment and patient presentation. TSA can be done at any age, but in general, to minimize complications (future need of a TSA revision) and improve quality of life:

 i) Age <55: Hemiarthroplasty maybe the best surgical option due to the likelihood these patients will need the joint converted to a total shoulder arthroplasty (and revising a total shoulder arthroplasty is much more complex and in some cases cannot be successfully performed)

 ii) Age 55–65: Surgery depends on patient anatomy and activity desires (TSA or resurfacing (HHR), although inexperienced surgeons may choose stemmed hemiarthroplasty (HA) as it is technically less demanding)

 iii) Age > 65: (generally TSA is best).

3) **Non-operative Treatment Options:**

a) At least 3 months of non-operative care that has failed to improve symptoms. Non-operative care should include at least two or more of the following:
i) Rest or activity modifications/limitations;

ii) Physical therapy modalities;

iii) Supervised home exercise;

iv) Pharmacologic treatment: oral/topical NSAIDS, acetaminophen, analgesics;

v) Corticosteroid injections

4) CONTRAINDICATIONS

a) Neurological disease resulting in chronic pain syndrome (CRPS or its variants) or loss of deltoid or rotator cuff function.

b) Active or recent (within 6 months of surgery) infection. History of prior shoulder joint infection without proof that indolent infection has been eliminated (patient has been off antibiotics for a minimum of 6 weeks) via laboratory work (serologies, including CBC with differential, ESR (erythrocyte sedimentation rate), CRP (C-reactive protein), with or without blood cultures, and synovial fluid aspiration (cultures, gram stain, cell count, differential, crystals)). Cultures must be for aerobic and anaerobic bacteria (AFB, fungal). Cultures must be held for minimum 30 days (especially to rule out propionobacterium acnes).

c) Nuclear scans, advanced imaging and often aspiration or soft tissue/bone biopsy (note: recent studies suggest only intra-operative tissue cultures are reliable indicators of joint contamination/infection and IF occult infection is a concern (after prior procedures), biopsies should be taken, delayed placement of the arthroplasty should be strongly considered after antibiotic spacer placement, and appropriate antibiotic management commenced once confirmed.

d) Poor dental hygiene (e.g. tooth extraction should be performed prior to arthroplasty). Major dental work within 2 year after a joint replacement MAY lead to seeding of the implant and possible revision surgery. If possible, all dental work must be completed prior to shoulder arthroplasty as these procedures increase risk for infection. Following surgery, patients should receive antibiotics for routine dental check-ups for a minimum of two years.

e) Any injection into the joint within 3 months of surgery.

II. INDICATIONS FOR HEMI-ARTHROPLASTY

1) Hemiarthroplasty may be necessary when the following criteria are met:

a) Patient meets all of the criteria within TSA; OR

b) Patient with avascular necrosis of the humeral head without advanced glenoid disease (Kellgren-Lawrence grade 1 or 2), stemmed hemiarthroplasty is often a better option to avoid the risks inherent with the glenoid component; AND

c) No injection into the joint within 3 months of surgery;

2) Kellgren-Lawrence Grading System:

a) Grade 0: No radiographic features of osteoarthritis

b) Grade I: Possible joint space narrowing and osteophyte formation
c) Grade II: Definite osteophyte formation with possible joint space narrowing

d) Grade III: Moderate multiple osteophytes, definite narrowing of joint space, some sclerosis and possible deformity of bone contour

e) Grade IV: Large osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone contour

3) **CONTRAINDICATIONS**

a) Any injection into the joint within 3 months of surgery.

III. REVERSE ARTHROPLASTY (RTSA)

This is a device that places the ball on the glenoid side (glenosphere and baseplate) and the socket on the humeral side. It has been used in Europe for decades but recently was approved for use in the US. It has specific indications which are changing constantly as more experience is gained with this concept.

The original purpose of a RTSA was to allow basic function of a pseudoparalytic shoulder from a chronic rotator cuff tear with arthropathy (or arthritis) in an inactive person over age 65. Because it is associated with a high complication rate (10-50% in primary procedures and as high as 70% in revisions), it should be used with careful consideration. Salvage after failed RTSA is difficult with poor outcomes.

It works by moving the center of joint rotation medial and downward and increasing deltoid tension to facilitate active abduction and elevation of the arm.

INDICATIONS FOR REVERSE ARTHROPLASTY:

Reverse total shoulder arthroplasty is currently indicated for patients greater than 65 years of age (age is a relative indication) with rotator cuff tear arthropathy, pseudoparalysis, adequate bone stock, no evidence of excessive prior acromioplasty and a functional deltoid.

1) **Treatment of Arthritic Shoulder:**

a) Non-repairable massive (> 2 tendons) rotator cuff tear AND intact deltoid, AND inability to actively elevate the arm above the level of the shoulder (90 degrees) (i.e. nonfunctional cuff tear arthropathy): AND

b) Age > 65: Case-by-case review for patients ages less than 65 years: AND

c) Failure of conservative treatment for greater than 3 months (formal PT for deltoid retraining and minimum of 1 steroid injection: AND

d) Patient must be compliant with instructions and understand long-term activity is limited to basic ADLS: AND

e) IF patient meets criteria but can raise the arm above shoulder level, a stemmed or resurfacing extended articular surface resurfacing device (EAS) (CTA head) may be a better option (i.e. FUNCTIONAL cuff tear arthropathy). This is also an option in those < 60 years old: AND
f) No injection into the joint within 3 months of surgery;

3) **CONTRAINDICATIONS**
 a) Any injection into the joint within 3 months of surgery.

4) **Treatment of fracture or failure TSA:**
 a) Acute 3-4 part fractures of proximal humerus with or without concomitant tuberosity as evidence by radiographic findings; AND
 b) Age >65.

IV. **REVISION ARTHROPLASTY**

Historically this procedure was coded as the removal of hardware and total shoulder arthroplasty. CPT introduced shoulder revision procedure codes in January 2013.

1) **There are two primary reasons for shoulder revision procedures:**
 a) Conversion of a previous hemiarthroplasty to a total shoulder and treatment of a failed total or
 b) Hemiarthroplasty (due to failure of the glenoid).

2) **Treatment of failed Total Shoulder Arthroplasty:**
 a) Failure of TSA as a result of subsequent non-repairable RCT as evidence by loss of ability to raise the arm; AND
 b) Large to massive non-repairable (stage 3-4 atrophy) RCT on imaging (CT arthrogram); AND
 c) Severe suprascapular neuropathy with associated rotator cuff dysfunction.

3) **Revision total shoulder arthroplasty may be necessary when the following are met:**
 a) Evidence of a prior total shoulder arthroplasty
 b) Clinical and radiographic evidence of a failed glenoid or humeral component or both (evidence includes radioluencies around cemented or uncemented glenoid and/or humeral components indicating osteolysis/loosening / instability)
 c) Periprosthetic humeral or scapular fracture
 d) Persistent pain, loss of function, ADLs
 e) Failure of non-surgical treatment OR the possibility of delay may make a revision more complicated with increased risk of peri-operative or post-operative complications
 f) Infected prior arthroplasty (as a single- or two-stage procedure, as indicated based on infection chronicity)
 g) Negative work up for infection including CRP ESR white count, plus/minus aspiration arthrogram.

4) **CONTRAINDICATIONS**
a) Prior hemiarthroplasty: in this situation, a hemiarthroplasty removal code and total shoulder arthroplasty code or reverse total shoulder arthroplasty code should be used.

b) Insufficient glenoid and/or humeral bone to support a revision component.

c) Active or recent history of infection.

d) Neurogenic pain syndrome.

e) Acromial fracture OR overly thin acromion from prior subacromial decompression.

f) Severe osteoporosis as evidenced by radiographic osteopenia, osteomalacia or severe osteoporosis on Dexascan.

g) Non-functioning deltoid or axillary nerve injury / palsy.

V. ADDITIONAL INFORMATION:

1) IMAGING

Nearly all shoulder problems can be diagnosed with adequate history/physical exam AND proper plain radiographic series (typically 4 views, TRUE AP-internal rotation, TRUE AP-external rotation, scapular Y (outlet view), axillary).

Advanced imaging should only be considered when evaluating for a SUSPECTED surgical problem determined from the above. It should not be used to “search” for pathology as MRI and CT (with or without arthrogram) scans often demonstrate asymptomatic abnormalities that are present with increasing frequency with advancing age.

MRI may over-estimate clinically important pathology in many cases yet can miss other treatable conditions and is very dependent on the imaging center and the physician reading the study. Highly trained, high volume orthopedic shoulder surgeons may interpret studies more accurately than radiologists given their ability to correlate history and physical exam findings with prior experience in surgery when pathology can be confirmed and compared to imaging. CT scan with 3-D reconstructions provide better data on glenoid anatomy and should be considered prior to any primary arthroplasty.

VI. REFERENCES

12) Tashjian RZ, Hung M, Keener JD, Bowen RC, McAllister J, Chen W, et al. Determining the minimal clinically important difference for the American Shoulder and Elbow Surgeons

OVERVIEW

This guideline describes indications for arthroscopic and open, non-arthroplasty shoulder surgeries.

Arthroscopy introduces a fiber-optic camera into the shoulder joint through a small incision for diagnostic visualization purposes. Other instruments may then be introduced to remove, repair, or reconstruct joint pathology. Surgical indications are based on relevant subjective clinical symptoms, objective physical exam and radiologic findings, and response to previous non-operative treatments when medically appropriate. Open, non-arthroplasty surgeries are performed instead of an arthroscopy as dictated by the type and severity of injury and/or disease.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

This guideline is structured with clinical indications outlined for each of the following applications:

I. Rotator Cuff Repair
II. Distal Clavicle Excision (DCE)
III. Labral Repairs
 1) SLAP
 2) Anterior-Inferior Labral Tear (Bankart)
 3) Posterior Labral Repair
 4) Combined Tears
 5) Open Capsulectomy for Multidirectional Instability
IV. Long Head Biceps (LHB) Tenotomy or Tenodesis
V. Synovectomy
VI. Lysis of adhesions; Capsulotomy
VII. Subacromial Decompression (SAD)
VIII. Elective surgery of the shoulder should only be considered if the following general criteria are met:
 1) There is clinical correlation of patient subjective complaints with objective exam findings and/or imaging (if applicable)
 2) Patient has limited function (ADLs, occupation, or sports)
 3) Patient is medically stable with no uncontrolled medical problems such as diabetes
 4) Patient does no have active local or systemic infection
 5) Patient does not have active, untreated drug dependency (drug dependency increases likelihood of poor surgical outcome)
 6) Patient is not an active smoker. Smoking increases rotator cuff degeneration, increases the prevalence of larger rotator cuff tears, and inhibits healing in many cases (especially primary rotator cuff repair) and is a relative contra-indication across
surgeries. A smoking cessation program should be instituted pre-operatively and continued post-operatively.

CLINICAL INDICATIONS

1. ROTATOR CUFF REPAIR (RCR)

Surgical treatment of rotator cuff tear (RCT) should only be performed when there is a clinical correlation of patient symptoms, clinical exam findings, imaging, and failed non-operative management (where required). Although many surgeons perform mini-open rotator cuff repair, traditional open rotator cuff repair (RCR) with deltoid take-down should be rare given increased morbidity compared to arthroscopic or mini-open surgery. Nonetheless, in certain situations traditional open repair remains an acceptable (albeit not preferred) technique.

NOTE: If Subacromial Decompression (SAD) is to be performed in conjunction with this surgery, see SAD-specific criteria in guidelines to confirm clinical necessity AND SAD must be noted within preoperative notes.

NOTE: RCR Surgery may be required as first line therapy in the following situations:

a) Surgery is appropriate as first line treatment when MRI shows significant progression of a full thickness tear, at least 50% increase in tear size, on serial imaging performed at least 3 months apart, even with minimal or no patient symptoms.

b) If MRI shows medium size or greater (must be a complete single tendon or greater) full thickness tear with minimal or no patient symptoms, surgery may be appropriate as first line treatment.

1) Surgical repair of a partially torn rotator cuff may be necessary when ALL of the following criteria are met:

a) Reproducible rotator cuff pain patterns as evidenced by:
 i) Lateral arm, deltoid pain not radiating past the elbow, night pain, or pain with overhead motions; AND
 ii) Positive impingement signs and/or tests on exam (reproducible pain when arm is positioned overhead (above plane of shoulder) with relief of pain when arm is repositioned below the plane of the shoulder); AND
 iii) Functional loss (inability to do normal and/or recreational activities); AND

b) MRI showing >50% partial thickness tear (articular-sided, concealed, or bursal-sided); AND

c) Failure of at least 12 weeks non-surgical treatment*.

d) *Nonsurgical treatment must include ALL of the following:
 i) Physical therapy or properly instructed home exercise program (physical therapy protocol should include treatment for scapular dyskinesia when present)
 ii) Rest or activity modification
 iii) Minimum of 4 weeks of oral NSAIDs (if not medically contraindicated)
iv) Single injection of corticosteroid and local anesthetic into subacromial or intra-articular space.

2) **Surgical repair of a small (<1cm), full thickness rotator cuff tear may be necessary when ALL of the following criteria are met:**
 a) Reproducible “rotator cuff pain patterns” as evidence by:
 i) Lateral arm, deltoid pain not radiating past the elbow, night pain, or pain with overhead motions; AND
 ii) Positive impingement signs and/or tests on exam (reproducible pain when arm is positioned overhead (above plane of shoulder) with relief of pain when arm is repositioned below the plane of the shoulder); AND/OR
 iii) Rotator cuff weakness on physical exam; AND
 iv) Functional loss (inability to do normal activities); AND
 b) MRI showing small, full thickness tear (<1cm); AND
 c) Failure of at least 6 weeks non-surgical treatment*

 *Nonsurgical treatment must include physical therapy or properly instructed home exercise program (physical therapy protocol should include treatment for scapular dyskinesis when present); AND
 i) Rest or activity modification; OR
 ii) Minimum of 4 weeks of oral NSAIDs (if not medically contraindicated); OR
 iii) Single injection of corticosteroid and local anesthetic into subacromial or intra-articular space.

3) **Surgical repair of a medium (1-3cm) or large (3-5cm), full-thickness torn rotator cuff may be necessary when ALL of the following criteria are met:**
 a) Reproducible “rotator cuff pain patterns” as evidence by:
 i) Lateral arm, deltoid pain not radiating past the elbow, night pain, or pain with overhead motions; AND
 ii) Positive impingement signs and/or tests on exam (reproducible pain when arm is positioned overhead (above plane of shoulder) with relief of pain when arm is repositioned below the plane of the shoulder); AND/OR
 iii) Rotator cuff weakness on physical exam; AND
 iv) Functional loss (inability to do normal activities); AND
 b) MRI showing medium (1-3cm) or large (3-5cm), full-thickness tear; OR
 c) Serial MRI demonstrates progression in size, even if asymptomatic; OR
 d) MRI demonstrates presence of atrophy and/or fatty degeneration and/or Goutallier stage 2.

4) **Surgical repair of a massive (>5 cm with at least 2 tendons involved) torn rotator cuff may be necessary when ALL of the following criteria are met:**
 a) MRI demonstrates Goutallier stage 0 (normal muscle), 1 (some fatty streaks), or 2 (less than 50% fatty degeneration or infiltration); AND
 b) Warner classification of atrophy "none" or "mild"; AND
c) No x-ray evidence of chronic subacromial articulation of humeral head (e.g. acromiohumeral distance less than 7 millimeters, acetabularization or femoralization, no remodeling of greater tuberosity, lack of sclerotic lateral acromion, lack of extensive CA (coracoacromial) ligament calcification; AND
d) MRI showing massive (>5cm), full-thickness tear.

5) Surgical revision of a previously repaired small, medium, large or massive torn rotator cuff may be necessary when ALL of the following criteria are met:
 a) All RCR revision cases within 1 year of original RCR will be reviewed on a case-by-case basis.
 b) MRI (with or without arthrogram) or CT arthrogram results showing failure of healing (Sugayab type 4-5) or recurrent tear > 3 months after index surgery.

II. DISTAL CLAVICLE EXCISIION (DCE)

The AC joint (acromio-clavicular joint) commonly develops degenerative disease in those over 30 years of age, those with a history with grade 1 or 2 AC sprain/separation, those with a history of heavy lifting (labor occupation or strength training), or those with evidence of remote trauma. It can occur in isolated form in younger patients (distal clavicle osteolysis) but is more commonly observed concomitantly with rotator cuff disease in those over age 40 years of age.

NOTE: If Subacromial Decompression is to be performed in conjunction with this surgery, see SAD-specific criteria in guidelines to confirm clinical necessity AND SAD must be noted within preoperative notes.

1) Distal Clavicle Excision may be necessary when ALL of the following criteria are met:
 a) Positive clinical exam findings as evidenced by pain upon palpation over AC joint and pain with cross-body adduction test; AND
 b) Positive radiographic findings:
 i) Radiographic (x-ray) demonstrates narrowed joint space, distal clavicle or medial acromial sclerosis, and/or osteophytes or cystic degeneration of distal clavicle or medial acromion correlating with the clinical findings, patient symptoms and diagnosis; OR
 ii) MRI (not required) findings with edema in the distal clavicle and/or inflammatory change within the joint space correlating with the clinical findings, patient symptoms and diagnosis; AND
 iii) Failed 12 weeks of non-surgical treatment*.
 c) *Nonsurgical treatment must include a single injection of corticosteroid and local anesthetic into the AC joint (with at least 50% pain relief from injection). Note: if injection fails, patient may be at higher risk for surgical infection if performed within 3-6 months of injection; AND
 i) Physical therapy or properly instructed home exercise program; OR
ii) Rest or activity modification; OR
iii) Minimum of 4 weeks of oral or topical NSAIDs (if not medically contraindicated).

III. LABRAL REPAIRS

There is a tendency to misinterpret normal degenerative labral changes and variations as “tears” which may lead to over-utilization of surgery if decisions are made upon imaging reports alone. In addition, the anterior-superior labrum (from 12 to 3 o’clock for a right shoulder) has many normal variations that can be misinterpreted as a tear, including sublabral hole/foramen, Buford complex, and a labral overhang with an intact biceps anchor. In general, true labral tears lead to pain, catching, popping, functional limitations (including ADLs, occupational and sports), micro-instability, and gross instability. Labral repairs are most-frequently associated with a specific traumatic event.

NOTE: If subacromial decompression is to be performed in conjunction with this surgery, see SAD-specific criteria in guidelines to confirm clinical necessity AND SAD must be noted within preoperative notes.

SLAP

A SLAP tear describes a labral tear that extends from 10 to 2 o’clock. There are many types of SLAP tears, and treatment options are dependent upon the type of tear. For all SLAP tears, non-operative management should always be used as the initial treatment approach. Surgical indications should be focused on clinical symptoms and failure to respond to non-operative treatments, rather than imaging (due to a higher percentage of tears being missed on images AND significant over-diagnosing of tears based on imaging-alone).

1) SLAP repair of a labral tear may be necessary when ALL of the following criteria are met:
 a) Minimum of 12 weeks of non-operative treatment:
 i) Activity modification by avoiding painful activity; AND
 ii) NSAIDs; OR
 iii) Oral steroids; OR
 iv) Failed intra-articular injection (Corticosteroid injection is not included in non-operative management for SLAP tear); OR
 v) PT or self directed home exercise program; AND
 b) MRI demonstrating superior labral tear; AND
 c) History compatible with tear (acute onset in thrower or overhead athlete, fall, traction injury, shear injury (MVA), lifting injury); AND
 d) Pain localized to the glenohumeral joint (often only associated with certain reaching or lifting activities and at night); OR
 e) Painful catching/popping/locking sensations; AND
 f) Inability to perform popping/locking sensations; AND
 g) Age < 40*; AND
 h) Type 2 or 4 SLAP tear (not type 1 or 3)
i) Labral and biceps fraying, anchor intact
ii) Labral fraying with detached biceps tendon anchor
iii) Bucket handle tear, intact biceps tendon anchor (biceps separates from bucket handle tear)
iv) Bucket handle tear with detached biceps tendon anchor (remains attached to bucket handle tear)

i) *All requests for SLAP repair in patients age >40 will be reviewed on a case-by-case basis.

j. CONTRAINDICATIONS:
i) ANY evidence of degenerative disease upon imaging
ii) Smoker and age >40
iii) Diabetics with poor control HgBA1c > 7
iv) MRI findings not attributable to normal common variants (for example, labral overhang)
v) In cases where a true SLAP tear exists, but the patient has one or more contraindications, a SLAP debridement (limited, extensive debridement), biceps tenotomy or tenodesis may be an alternative. See Tenotomy and Tenodesis Indications.

2) ANTERIOR-INFERIOR LABRAL TEAR (Bankart):

This is defined as a “Bankart” tear after the physician who first described it. It is located in the 3-6 o’clock region of a right shoulder, “clock face”. It is typically caused by a traumatic instability event (dislocation or subluxation). It can involve the labrum, the capsular ligaments (IGHL [inferior glenohumeral ligamentous complex]) and/or the bone (bony Bankart fracture). If symptomatic, bankart tears typically require surgical repair (indications below).

a) Bankart repair of a labral tear may be necessary when ALL of the following criteria are met:

i) ACUTE
 1. History of an acute event of instability (subluxation or dislocation) or acute onset of pain following activity; AND
 2. Acute Labral Tear on MRI or CT imaging; AND
 3. Age < 30 (high recurrence rate without repair); AND
 4. Range of motion is not limited by stiffness upon physical exam; AND
 5. Clinical exam findings demonstrate positive apprehension test, positive relocation test, positive labral grind test, or objective laxity with pain.

ii) RECURRENT (two or more dislocations)
 1. Recurrent instability (subluxation or dislocation) with history of repeat events; AND
 2. Evidence of labral tear with or without bony Bankart fracture of glenoid width upon imaging; AND
 3. Range of motion is not limited by stiffness upon physical exam; AND
4. Clinical exam findings demonstrate positive apprehension test, positive relocation test, positive labral grind test, or objective laxity with pain.

iii) CONTRAINDICATIONS

1. Pain only (no documented recurrent instability events) in patients over 40.
2. Evidence of degenerative glenohumeral disease upon imaging
3. Evidence of Engaging Hill Sachs humeral head defect upon imaging if surgery is for stand alone Bankart repair
4. Cases demonstrating greater than 20% glenoid bone loss (should indicate Latarjet reconstruction or bone graft [autograft or allograft] repair) will be reviewed on a case by case basis.

3) POSTERIOR LABRAL REPAIR:

Identical to Bankart tears with the exception of the posterior aspect of the shoulder. Posterior labral tears are often associated with a paralabral cyst that grows large enough to compress the suprascapular nerve (isolated to infraspinatus). Posterior labral tears are frequently associated with contact sports or a patient history of a traumatic fall/posterior loading of the joint. They are often observed in athletes performing repetitive posterior loading of the joint (offensive linemen in football, weight-lifting: push-ups, bench press). These tears are more likely to result in pain and weakness rather than recurrent dislocations/instability.

a) Surgical repair of a posterior labral tear may be necessary when ALL of the following criteria are met:
 i) Symptoms of pain OR painful catching/popping OR instability (shoulder pops out of joint); AND
 ii) MRI findings of posterior labral tear; AND
 iii) Exam findings demonstrate positive load-shift test, OR jerk test, OR glenohumeral grind test OR objective laxity with pain or profound weakness; AND
 iv) Failure of 12 weeks or more of non-surgical treatment (exception is traumatic tear in competitive athlete at any level): NSAIDs and home exercise OR physical therapy and activity modifications (i.e. avoidance of painful activity); AND
 v) Age < 40*; AND
 vi) No radiographic evidence of degenerative disease (e.g. posterior glenoid cartilage loss, subchondral glenoid cysts, mucoid degeneration of labrum, narrowing of joint space with posterior humeral head subluxation on axillary x-ray or axial MRI images).

*NOTE: Posterior labral changes are often misinterpreted on MRI as a “tear” in age >40 years old when early glenohumeral degeneration manifests with posterior glenohumeral degeneration.
4) **COMBINED TEARS (e.g Anterior/Posterior, SLAP/Anterior, SLAP/Posterior, SLAP/Ant/Post)**

Combined tears that require repair are almost always associated with significant recurrent instability. Often tears begin within one area and overtime the failure to repair the original injury causes the tear to extend.

a) **Surgical repair of a combination tear may be necessary when ALL of the following criteria are met:**

i) **Acute Tears**
 (1) History of an acute event of instability (subluxation or dislocation): AND
 (2) Acute labral tear on MRI/CT imaging with/without bony bankart fracture not > 25% of glenoid width upon imaging; AND
 (3) Age < 30 (high recurrence rate without repair); AND
 (4) Range of motion not limited by stiffness upon physical exam; AND
 (5) Clinical exam findings demonstrate positive apprehension test and positive relocation test, OR positive labral grind test OR objective laxity with pain; AND
 (6) Minimal to no evidence of degenerative changes on imaging.

ii) **Recurrent Tears**
 (1) Recurrent instability (subluxation or dislocation) with at least 2 instability events: AND
 (2) Labral tear on MRI AND CT, with/without Bony Bankart fracture not > 25% of glenoid width upon imaging; AND
 (3) Range of motion not limited by stiffness upon physical exam; AND
 (4) Clinical exam findings demonstrate positive apprehension test and positive relocation test, or positive labral grind test, or objective laxity with pain; AND
 (5) Minimal to no evidence of degenerative changes on imaging.

NOTE: Thermal capsulorrhaphy was previously used to augment unstable shoulders, with and without labral tears. **It is no longer considered an accepted procedure for unstable shoulders.**

5) **Open or Arthroscopic Capsulorrhaphy for Multidirectional Instability of the Shoulder (MDI)**

a) Patient has pain and limited function (ADLs, occupation, or sports): AND
b) Patient has recurrent instability due to hyperlaxity or mobility and no traumatic dislocation: AND
c) Physical exam supports repeatable increased glenohumeral joint translation (greater than 2cm of movement during the sulcus test); AND
d) Imaging (x-ray and MRI) rules out fracture and/or other soft-tissue injury; AND
e) Failure of 6 months or more of formal physical therapy and activity modifications (i.e. avoidance of painful activity).

IV. LONG HEAD BICEPS (LHB) TENOTOMY/TENODESIS

This is a common source of pain, especially in overhead sports and in the presence of rotator cuff tears (especially subscapularis). It can be an isolated source of pain in chronic tenosynovitis, SLAP tears, or small tears of the biceps sling, resulting in dynamic or static subluxation or dislocation. LHB problems are frequently missed on MRI (especially using contrast which can mask the pathology). The choice of tenodesis versus tenotomy is controversial. Typically, tenodesis is better for more active, muscular individuals performing higher demand activity (labor, sports). Tenotomy is generally a better option for older, less active patients with poor muscle definition, as it generally leaves the patient with a "popeye" deformity and the possibility of biceps cramping or anterior shoulder pain with activity. The choice of tenotomy vs. tenodesis is generally left up to the surgeon/patient.

NOTE: If Subacromial Decompression is to be performed in conjunction with this surgery, see SAD-specific criteria in guidelines to confirm clinical necessity AND SAD must be noted within preoperative notes.

1) Tenotomy or Tenodesis may be necessary when the following criteria are met:
 a) Diagnosis of chronic LHB groove pain from tenosynovitis refractory to conservative treatment OR
 b) Age > 50 with SLAP tear OR
 c) Smoker with SLAP labral tear (regardless of age, more significant with increasing age) OR
 d) Failed SLAP repair OR
 e) SLAP tear in diabetic or patient with loss of motion or predisposition to stiff shoulder OR
 f) LHB hypertrophy/tearing/subluxation in association with RCR AND
 g) Failed 12 weeks of non-surgical treatment including:
 i) Activity modification (eliminating or decreasing pain producing movements) or rest; AND
 ii) Oral OR topical anti-inflammatory medicine AND
 iii) Intra-articular OR bicipital groove (anesthetic and corticosteroid) injection; AND
 iv) Home exercise program OR formal physical therapy for >12 weeks.

2) CONTRAINDICATIONS
 a) Less than 12 weeks of non-surgical treatment for isolated LHB tenosynovitis.
 b) (Relative Contraindication) Failed bicipital groove injection
c) The indications for tenodesis and tenotomy are the same with the exception that tenodesis is typically better for more active, muscular individuals that are performing higher-demand activities for work or sport. Tenotomy is often preferred in patients that smoke (this is a relative indication of tenotomy over tenodesis) due to healing problems in tenodesis.

V. SYNOVECTOMY

Synovitis is common in many shoulder conditions and typically resolves when the primary pathology is treated. Most commonly, this includes loose bodies, inflammatory arthritis or degenerative arthritis, labral tears and adhesive capsulitis. Primary synovial diseases include pigmented villonodular synovitis, synovial chondromatosis, rheumatoid arthritis, other inflammatory arthritides, traumatic synovial hypertrophy or metaplasia.

Synovectomy as an isolated procedure is usually reserved for primary synovial disease or in cases where secondary hypertrophic synovitis is documented during arthroscopy (these include adhesive capsulitis, osteoarthritis, chronic rotator cuff tear). These should be evident on arthroscopic photographs taken at surgery but may be missed on preoperative images.

NOTE: If Subacromial Decompression is to be performed in conjunction with this surgery, see SAD-specific criteria in guidelines to confirm clinical necessity AND SAD must be noted within preoperative notes.

VI. LYSIS OF ADHESIONS; CAPSULOTOMY

Adhesive capsulitis is a thickening and tightening of the soft tissue capsule that surrounds the glenohumeral joint. Adhesive capsulitis begins with a gradual onset of pain and limitation of shoulder motion, patient discomfort and loss of movement progress to interfere with activities of daily living. Primary adhesive capsulitis is the subject of much debate as the specific causes of this condition are not fully understood. Patients with uncontrolled diabetes have a significantly higher risk of developing adhesive capsulitis than the general population. Secondary (acquired) adhesive capsulitis develops from a known cause, such as stiffness following a shoulder injury, surgery, or a prolonged period of immobilization. Adhesive capsulitis may last from one to three years if untreated.

a) Patient has pain, loss of motion, and limited function (ADLs, occupation, or sports); AND
b) Physical exam evaluating range of motion and patient comorbidities (diabetes); AND
c) Failure of 12 weeks of non-operative treatment*; AND
d) Imaging (x-ray and/or MRI) may be used to identify other underlying problems.
e) *Nonsurgical treatment must include physical therapy or properly instructed home exercise program; AND
 i) Rest or activity modification; OR
 ii) Oral or topical NSAIDs (if not medically contraindicated)

VII. SUBACROMIAL DECOMPRESSION (SAD)

Acromioplasty involves removing bone from the undersurface of the acromion to change a type 3 acromion to a type 1 acromion. Although debated for decades, current evidence concludes that there is no role for isolated acromioplasty (subacromial decompression), which prompted conversion of CPT code 29826 (acromioplasty, subacromial decompression) from an index, primary, "stand-alone" code to an "add-on" code only.

1) Subacromial decompression may be necessary in conjunction with other shoulder procedures when ALL of the following criteria are met:
 a) Radiographic (x-ray) evidence of mechanical outlet impingement as evidenced by a Bigliani type 3 morphology*; AND
 b) Must be performed at the same time as capsulorrhaphy, repair of SLAP lesion, removal of loose body, synovectomy (partial or complete), debridement (limited or excessive), distal claviculectomy, lysis and resection of adhesions, rotator cuff repair, or biceps tenodesis.
 c) *There are 3 types of acromion anatomy according to Bigliani classification:
 i) Type 1, flat, 20%
 ii) Type 2, curved, 40%
 iii) Type 3, hooked, 40%

NOTE: If decompression is requested and performed as part of rotator cuff repair patient must have documented type 3 acromial morphology on supraspinatus outlet or scapular-Y x-ray. Please see rotator cuff repair indications.

2) CONTRAINDICATIONS:
 a) Type 1 or Type 2 or a thinned acromion. Subacromial bursectomy may be a reasonable option.
 b) If patient has received an injection in the subacromial space and there is failure to adequately respond—significant relief (>50%) for minimum of 1 week—to injection in the subacromial space (pain should respond temporarily if impingement).
 c) Prior subacromial decompression with either a Type 1 or a thinned acromion or no evidence of overhang on x-ray (unnecessary revision can thin the acromion and lead to deltoid avulsion and/or acromial fracture)
 d) Open SAD procedures should rarely be performed given the increased morbidity due to deltoid disruption.
VIII. ADDITIONAL INFORMATION

1) ARTHROSCOPIC vs. OPEN

Most shoulder procedures can be performed open or arthroscopic. The method is simply the “tool” used to perform a given surgical procedure. However, arthroscopic surgery often leads to more rapid recovery with less pain, fewer complications (e.g. loss of motion, infection) and more rapid restoration of function. This is only true if the user of the “tool” (surgeon) is skilled in this discipline. Arthroscopic surgery is technically more difficult, requiring more complex 3-D spatial skills, hand-eye coordination, 3-D interpretation of 2-D imaging and advanced training and higher volume to become proficient. Thus, in unskilled hands, arthroscopic surgery can lead to INCREASED morbidity relative to the open form of the same procedure. Studies have demonstrated that higher volume, specialty trained surgeons have better outcomes, shorter operative times, faster patient recovery and decreased costs.

The indications for most shoulder surgery is identical for open and arthroscopic techniques and the preferred method of surgery should be left to the surgeon, given their comfort with the specific procedure.

2) IMAGING

Nearly all shoulder problems can be diagnosed with adequate history/physical exam AND proper plain radiographic series (typically 3 views - AP, scapular Y, axillary).

Advanced imaging should only be considered when evaluating for a SUSPECTED surgical problem determined from the above. It should not be used to “search” for pathology as MRI and CT (with or without arthrogram) scans often demonstrate asymptomatic abnormalities that are present with increasing frequency with advancing age.

MRI may over-estimate clinically important pathology in many cases yet can miss other treatable conditions and is very dependent on the imaging center and the physician reading the study. Highly trained, high volume Orthopedic shoulder surgeons may interpret studies more accurately than radiologists given their ability to correlate history and physical exam findings with prior experience in surgery when pathology can be confirmed and compared to imaging.

3) ROTATOR CUFF REPAIR

The rotator cuff (RC) is a highly complex 5 layered structure that envelopes the humerus. It is made up of the inter-woven fibers of 4 muscle-tendon units and serves to maintain proper humeral head positioning on the glenoid during shoulder motion. Tears (RCT) can occur within the tendon substance, on the bursal side, articular side, or a combination of these.

Most tears begin within the tendon substance at the attachment of the supraspinatus in the critical zone behind the biceps tendon. It can then extend anteriorly, posteriorly and/or medially. It can include the fibers of the biceps sling, which maintains stability of
the long head of the biceps. The latter is often missed on MRI. If left untreated, RCT tend to progress over time as the intrinsic healing ability is low. Most RCTs are degenerative and the chance of having a full thickness ASYMPTOMATIC RCT on MRI is approximately 10% per decade of life (e.g. 50% at age 50). They are the result of normal shoulder use with micro-tearing that ultimately leads to a larger tear. They can also occur in younger patients involved with repetitive overhead activity and tension overload sports (e.g throwing, tennis). The latter tears are pathologically different and usually start on the articular side and often in conjunction with labral tears. They are also more complex to treat.

4) **LABRAL TEARS**

The labrum is a circumferential (or nearly) fibrocartilage surrounding the glenoid. It is a complex structure but simplistically serves to provide stability to the shoulder through a variety of methods (e.g. deepens the glenoid fossa, acts as a bumper, attachment point for stabilizing capsular ligaments and long head biceps tendon). Fibers blend with the articular cartilage of the glenoid rim so that there is a smooth transition to the joint surface.

With age and degeneration, the articular cartilage thins and the labrum hypertrophies giving the appearance on MRI of a “tear”. These can be misinterpreted by some and lead to repairs of normal labral tissue and subsequently, a stiff painful shoulder. In addition, the anterior-superior labrum (from 1 to 3 o’clock for a right shoulder) has a many normal variations that can be misinterpreted as a tear including sublabral hole, Buford complex and a loose attachment.

To understand which findings on MRI (or other advanced imaging) are pathologic versus normal “variants” or age-appropriate changes, one needs to understand the function of the labrum, normal ranges and clinical importance of each region. This is critical to determine which tears require repair.

There are 3 clinically important regions to the labrum which can tear: superior labrum (superior labrum anterior posterior) or SLAP tear (10-2 o’clock for right shoulder), anterior-inferior labrum (Bankart tear, 3-6 o’clock) and posterior labrum (Posterior Bankart, Kim Lesion, 6 to 10 o’clock). Both anterior and posterior tears can connect via an inferior tear. In addition, any combination of tears can occur. A complete circumferential tear is typically called a triple labral tear.

Advanced imaging is very sensitive to labral abnormalities but is center dependent. In addition, interpretation of the clinical significance of labral abnormalities has been shown to be more accurate when determined by highly trained Orthopedic shoulder specialists when compared to radiologists. The latter tend to There is a tendency to over read over-read normal degenerative changes and variations as “tears” which may lead to over-utilization of surgery by those surgeons who rely on imaging reports alone or do not have expertise in MRI interpretation.
Clinically relevant triple labral tears (i.e. circumferential 360° tears) may be associated with gross recurrent instability. Circumferential tears without instability are more often degenerative and should be debrided if painful but not repaired.

- Note that all degenerative shoulders will have thinning of the articular cartilage on the periphery of the glenoid and hypertrophy of the labrum, which is typically interpreted on MRI by the radiologist as a “tear”. This can lead to inappropriate repair and worsening clinical symptoms of pain and loss of motion. The posterior aspect of the joint is affected earliest and most severely
- Injections are usually not indicated for labral tears but maybe indicated for degenerative shoulders

IX. REFERENCES

TOC

22532 – Thoracic Spine Surgery

CPT Codes: 22532, 22534, 22556, 22585, 22610, 22614, 22830, 63003, 63016, 63046, 63048, 63055, 63057, 63064, 63066, 63077, 63078

OVERVIEW:

Thoracic Decompression with or without fusion:

Thoracic disc herniation with or without nerve root compression is usually treated conservatively (non-surgically). A back brace may be worn to provide support and limit back motion. Injection of local anesthetic and steroids around the spinal nerve (spinal nerve blocks) may be effective in relieving radicular pain. As symptoms subside, activity is gradually increased. This may include physical therapy and/or a home exercise program. Preventive and maintenance measures (e.g., exercise, proper body mechanics) should be continued indefinitely. Job modification may be necessary to avoid aggravating activities.

Simple laminectomy is rarely used in the treatment of thoracic disc herniation because of the high risk of neurologic deterioration and paralysis. Excision of the disc (discectomy) may be performed via several different surgical approaches – anteriorly, laterally, or transpedicularly. Fusion should be performed only if surgery causes instability in the spinal column. Many newer techniques do not usually destabilize the thoracic spine.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

OVERVIEW:

Thoracic disc herniation with or without nerve root compression is usually treated conservatively (non-surgically). A back brace may be worn to provide support and limit back motion. Injection of local anesthetic and steroids around the spinal nerve (spinal nerve blocks) may be effective in relieving radicular pain. As symptoms subside, activity is gradually increased. This may include physical therapy and/or a home exercise program. Preventive and maintenance measures (e.g., exercise, proper body mechanics) should be continued indefinitely. Job modification may be necessary to avoid aggravating activities.

Simple laminectomy is rarely used in the treatment of thoracic disc herniation because of the high risk of neurologic deterioration and paralysis. Excision of the disc (discectomy) may be performed via several different surgical approaches – anteriorly, laterally, or transpedicularly. Fusion should be performed only if surgery causes instability in the spinal column. Many newer techniques do not usually destabilize the thoracic spine.

INDICATIONS:

All requests for thoracic spine surgery will be reviewed on case-by-case basis. The following criteria must be met for consideration.
1. **INDICATIONS FOR DECOMPRESSION SURGERY ONLY INCLUDE:**

- Positive Clinical Findings of Myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression**— immediate surgical evaluation is indicated. Symptoms may include any of the following:
 - upper or lower extremity weakness
 - unsteady gait related to myelopathy/balance or generalized lower extremity weakness
 - disturbance with coordination
 - hyperreflexia
 - Hoffmann sign
 - positive Babinski sign
 - clonus

OR

- Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) or lower extremity weakness (0-3/5 on the strength scale) or paralysis with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images—immediate surgical evaluation is indicated;

OR

When **ALL** of the following criteria are met:

- Persistent or recurrent symptoms/pain with functional limitations that are unresponsive to at least **12 weeks of conservative treatment** concerted conservative treatment to include completed and appropriate therapy (including stabilization exercises and epidural steroid injections);

AND

- Imaging studies confirm the presence of spinal cord or spinal nerve root compression at the level corresponding with the clinical findings (MRI or CT).

2. **INDICATIONS FOR THORACIC DECOMPRESSION WITH FUSION SURGERY INCLUDE:**

- Deformity Cases—please refer to our **Deformity Spine Surgery (Adult) Guideline**.

OR

For Myelopathy or radiculopathy secondary to cord or root compression (see criteria described below) satisfying the indications for decompressive surgery requiring extensive decompression that results in destabilization of the thoracic spine.

- Positive Clinical Findings of Myelopathy with evidence of progressive neurologic deficits consistent with worsening **spinal cord compression**—immediate surgical evaluation is indicated. Symptoms may include:
 - upper extremity weakness
 - unsteady gait related to myelopathy/balance or generalized lower extremity weakness
• impaired coordination
• hyperreflexia
• Hoffmann sign
• positive Babinski sign
• clonus

OR
• Progressive neurological deficit (motor deficit, bowel or bladder dysfunction) or lower extremity weakness (0-3/5 on the strength scale) or paralysis with corresponding evidence of spinal cord or nerve root compression on an MRI or CT scan images — immediate surgical evaluation is indicated;

AND
• Anticipated intra-operative destabilization due to extensive thoracic decompression surgery;

OR

When ALL of the following criteria are met:
• Persistent or recurrent symptoms/pain with functional limitations that are unresponsive to at least 12 weeks of conservative treatment
conscierd conservative treatment to include completed and appropriate therapy (including stabilization exercises and epidural steroid injections);

AND
• Imaging studies confirm the presence of spinal cord or spinal nerve root compression commensurate with the clinical findings (MRI or CT);

AND
• Anticipated intra-operative destabilization due to extensive thoracic decompression surgery.

NOTE: There is no current evidence base to support fusion in the thoracic spine for degenerative disease without significant neurological compression or significant deformity as outlined above.

CONTRAINDICATIONS FOR SPINE SURGERY

• Medical contraindications to surgery, e.g., severe osteoporosis; infection of soft tissue adjacent to the spine, whether or not it has spread to the spine; severe cardiopulmonary disease; anemia; malnutrition and systemic infection.

• Psychosocial risk factors. It is imperative to rule out non-physiologic modifiers of pain presentation or non-operative conditions mimicking radiculopathy or instability (e.g., peripheral neuropathy, piriformis syndrome, myofascial pain, sympathetically mediated pain syndromes, sacroiliac dysfunction, psychological conditions, etc.) prior to consideration of elective surgical intervention.
- **Active nicotine use prior to fusion surgery.** The patient must refrain from nicotine use for at least four weeks prior to surgery and during the period of fusion healing.

- **Morbid Obesity.** Contraindication to surgery in cases where there is significant risk and concern for improper post-operative healing, post-operative complications related to morbid obesity, and/or an inability to participate in post-operative rehabilitation.

NOTE: Cases of severe myelopathy and progressive neurological dysfunction may require surgery despite these general contraindications.

REFERENCES:

Reviewed/Approved by Michael Pentecost, MD, Chief Medical Officer