Guidelines for Clinical Review Determination

Preamble
Magellan is committed to the philosophy of supporting safe and effective treatment for patients. The medical necessity criteria that follow are guidelines for the provision of diagnostic imaging. These criteria are designed to guide both providers and reviewers to the most appropriate diagnostic tests based on a patient’s unique circumstances. In all cases, clinical judgment consistent with the standards of good medical practice will be used when applying the guidelines. Guideline determinations are made based on the information provided at the time of the request. It is expected that medical necessity decisions may change as new information is provided or based on unique aspects of the patient’s condition. The treating clinician has final authority and responsibility for treatment decisions regarding the care of the patient.

Guideline Development Process
These medical necessity criteria were developed by Magellan Healthcare for the purpose of making clinical review determinations for requests for diagnostic tests. The developers of the criteria sets included representatives from the disciplines of radiology, internal medicine, nursing, and cardiology and other specialty groups. They were developed following a literature search pertaining to established clinical guidelines and accepted diagnostic imaging practices.

All inquiries should be directed to:
Magellan Healthcare
PO Box 67390
Phoenix, AZ 85082-7390
Attn: Magellan Healthcare Chief Medical Officer
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>EXPANDED CARDIAC GUIDELINES</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>93307 – Transthoracic Echocardiology (TTE)</td>
<td>4</td>
</tr>
<tr>
<td>93312 – Transesophageal Echocardiology (TEE)</td>
<td>28</td>
</tr>
<tr>
<td>93350 – Stress Echocardiography</td>
<td>33</td>
</tr>
</tbody>
</table>

Prepared June 19, 2019
INTRODUCTION

➢ Transthoracic echocardiography (TTE) uses ultrasound to image the complex structures of the heart in a real time format, providing 2-dimensional, cross sectional images.

➢ The addition of Doppler ultrasound derives hemodynamic data from flow velocity versus time measurements, as well as from color coded two dimensional representations of flow velocities.

➢ TTE’s safety and versatility in examining cardiac structure, function, and hemodynamics lends to its utility for numerous indications in children and adults.

➢ TEE (transesophageal echocardiography) widens the scope of utility for echocardiographic imaging, and its indications are covered in a separate guideline.

ADULT PATIENTS

Indications for pediatric patients follow the section for adult patients.

Indications for Transthoracic Echocardiography (TTE)

(Douglas 2011)

<table>
<thead>
<tr>
<th>General Evaluation of Cardiac Structure and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Suspected Cardiac Etiology</strong></td>
</tr>
<tr>
<td>• Symptoms or conditions potentially related to suspected cardiac etiology including, but not limited to, chest pain, shortness of breath, palpitations, TIA, stroke, or peripheral embolic event</td>
</tr>
<tr>
<td>• Respiratory failure or hypoxemia of uncertain etiology if cardiac structural or myocardial disease is a consideration</td>
</tr>
<tr>
<td>• Prior testing that is concerning for heart disease or structural abnormality including but not limited to ECG, chest X-ray, baseline scout images from stress echocardiography, or cardiac biomarkers</td>
</tr>
<tr>
<td><strong>Arrhythmias</strong></td>
</tr>
<tr>
<td>• Frequent VPCs or exercise-induced VPCs</td>
</tr>
<tr>
<td>• Atrial fibrillation, SVT, or VT</td>
</tr>
<tr>
<td><strong>Presyncope/Syncope</strong> (Shen 2017; Benditt 2018; Doherty 2017)</td>
</tr>
<tr>
<td>• When clinical rationale supports a suspicion of structural or potentially structurally associated arrhythmic heart disease, i.e. a diagnosis known to cause such symptoms</td>
</tr>
<tr>
<td><strong>Perioperative Evaluation</strong> (Fleischer 2014; Lentine 2012; Cowie 2010)</td>
</tr>
</tbody>
</table>
- Preoperative left ventricular function assessment in patients who are candidates for kidney or liver transplantation: TTE might identify pulmonary hypertension and/or intrapulmonary arteriovenous shunt in candidates for liver transplantation
- Re-evaluation (<1 yr) in patients with moderate or severe aortic stenosis, who will be subjected to increased hemodynamic demands (e.g. noncardiac surgery, pregnancy)
- Evaluation of patients prior to noncardiac surgery with clinically suspected moderate or greater degrees of valvular stenosis or regurgitation if there has been either
  - No prior echo within 1 year
  - There has been a significant change in clinical status or physical examination since the last evaluation.

### Pulmonary Hypertension

- Evaluation of suspected pulmonary hypertension including evaluation of right ventricular function and estimated pulmonary artery pressure
- Evaluation of pulmonary embolism patients with respect to right ventricular function and pulmonary hypertension, with intent to risk stratify and initiate appropriate therapy (Saric 2016).
- Routine surveillance (≥1 y) of known pulmonary hypertension without change in clinical status or cardiac exam
- Re-evaluation of known pulmonary hypertension if there is a change in clinical status or cardiac exam, or to guide therapy
- Surveillance for pulmonary hypertension during chemotherapy with dasatinib, every 3 months during and again at completion of therapy, and as required for subsequent symptoms or signs of pulmonary hypertension (Zamorano 2016).

### Evaluation of Valvular Function

#### INITIAL Evaluation of Valvular Function in an Asymptomatic Patient

- Asymptomatic patient with unexplained heart murmur or abnormal heart sounds, with reasonable suspicion of valvular heart disease
- Continuous heart murmur (Warnes 2008)
- History of rheumatic heart disease
- Known systemic or acquired disease associated with valvular heart disease (Examples: Ankylosing spondylitis, Marfan's, Turner's, history tertiary syphilis, Ehlers Danlos or Loeys-Dietz syndromes, etc.) (Hiratzka 2010)
- First degree family member has history of bicuspid aortic valve (Warnes 2008)
- Patient with Turner syndrome, for evaluation of bicuspid aortic valve, as well as coarctation of the aorta and aortic root dilation
- Exposure to medications that could result in development of valvular heart disease (Examples: The prior use of the diet drug fenfluramine/phentermine, marketed as Fen Phen, and or dexphenfluramine alone, can cause aortic or mitral regurgitation. Bengluorex is another culprit diet drug. Ergot derivatives used for migraine, such as ergotamine and methysergide are a group. Bromocriptine (another ergot derivative) can cause valvular problems. Parkinson medications, such as pergolide and cabergoline are another group, both removed from the US market. Also, prior radiation to the heart valves can cause valvular disease. The vast majority of the disease is valvular regurgitation, mainly aortic, mitral, and tricuspid. There have even been reports of Ecstasy causing valvular regurgitation, but that appears to be less clear.)

**Murmur or Click**
- Initial evaluation when there is a reasonable suspicion of valvular or structural heart disease
- Re-evaluation of known valvular heart disease with a change in clinical status or cardiac exam, or to guide therapy

### Native Valvular Stenosis
- Routine surveillance (≥3 yr) of bicuspid aortic valve, aortic sclerosis, or mild valvular stenosis, without a change in clinical status or cardiac exam
- Routine surveillance (≥1 yr) of moderate stenosis without a change in clinical status or cardiac exam
- Re-evaluation (<1 yr) in patients with moderate or severe aortic stenosis, who will be subjected to increased hemodynamic demands (e.g. noncardiac surgery, pregnancy)
- Re-evaluation of an asymptomatic patient with severe aortic stenosis 6-12 months without change in clinical status or cardiac exam
- Re-evaluation after control of hypertension in low flow – low gradient severe aortic stenosis with preserved ejection fraction
- In asymptomatic young adults, annual TTE for aortic stenosis with mean Doppler gradient > 30 mm Hg or peak instantaneous gradient >50 mm Hg, and every 2 years for patients with lesser gradients (Warnes 2008)
- In asymptomatic patient with pulmonic stenosis, with peak instantaneous gradient < 30 mm Hg, follow up TTE at 5 year intervals (Warnes 2008)
- In asymptomatic patient with pulmonic stenosis, with peak instantaneous gradient > 30 mm Hg, follow up TTE at 2-5 year intervals(Warnes 2008)

### Native Valvular Regurgitation With TTE (aLancellotti 2013)
- Routine surveillance (≥1 yr) of moderate valvular regurgitation without change in clinical status or cardiac exam
- Re-evaluation of asymptomatic patient (6-12 months) with severe aortic regurgitation with preserved ejection fraction and normal left ventricular size
- Re-evaluation of asymptomatic patient (6-12 months) with severe mitral regurgitation

### Prosthetic Valves With TTE
- Initial postoperative evaluation of prosthetic valve for establishment of baseline, typically 6 weeks to 3 months postoperative.
- Routine surveillance (≥3 y after valve implantation) of prosthetic valve if no known or suspected valve dysfunction
- Evaluation of prosthetic valve with suspected dysfunction or a change in clinical status or cardiac exam
- Re-evaluation of known prosthetic valve dysfunction when it would change management or guide therapy
- Evaluation prior to pregnancy in patients with a prosthetic valve and no echocardiography within the past year

### Infective Endocarditis (Native or Prosthetic Valves) With TTE
• Initial evaluation of suspected infective endocarditis with positive blood cultures or a new murmur
• Re-evaluation of infective endocarditis at high risk for progression or complication or with a change in clinical status or cardiac exam, or when findings might change management
• Re-evaluation of prior TTE/TEE finding for interval change (e.g. resolution of vegetation after antibiotic therapy) when a change in therapy is anticipated or under consideration
• Re-evaluation of patient with infective endocarditis at high risk of progression of complication (e.g., extensive infective tissue/large vegetation on initial echocardiogram, or staphylococcal, enterococcal, or fungal infections) in the absence of clinical change

**Transcatheter Valvular Intervention**

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcatheter Aortic Valve Replacement (TAVR), one of the following:</td>
<td>(Otto 2017; Doherty 2017)</td>
</tr>
<tr>
<td>For pre-TAVR evaluation:</td>
<td>Assessment of number cusps and degree of calcification</td>
</tr>
<tr>
<td>Post TAVR at 30 days (6 weeks to 3 months also acceptable) and annually</td>
<td></td>
</tr>
<tr>
<td>Post TAVR evaluation:</td>
<td>Assessment of aortic regurgitation when there is suspicion of valvular dysfunction (&lt;30 days)</td>
</tr>
<tr>
<td>Post TAVR evaluation:</td>
<td>Assessment of stroke with suspicion of valve dysfunction or thrombus</td>
</tr>
</tbody>
</table>

| Percutaneous Mitral Valve Repair, one of the following: | (Doherty 2017) |
| Determination of patient eligibility | |
| Reassessment for degree of MR and left ventricular function (pre-discharge, at 1, 6, and 12 months, and then annually to 5 yr) | |

**Additional Interventions or Noncardiac Procedures**

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance of and evaluation for percutaneous noncoronary cardiac procedures including but not limited to pericardiocentesis, septal ablation, right ventricular biopsy, cardiac valvular and structural interventions, radiofrequency ablation, or LVAD optimization or weaning</td>
<td>(Wunderlich 2018; Porter 2015).</td>
</tr>
<tr>
<td>Periprocedural cardiac monitoring of noncardiac procedures posing substantial hemodynamic or ischemic risk, procedures requiring fluid resuscitation, etc., when it can assist management</td>
<td></td>
</tr>
</tbody>
</table>

**Intracardiac and Extracardiac Structures**

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected cardiac mass (Saric 2016)</td>
<td></td>
</tr>
<tr>
<td>Suspected cardiovascular source of embolus (Saric 2016)</td>
<td></td>
</tr>
<tr>
<td>Suspected pericardial conditions</td>
<td></td>
</tr>
<tr>
<td>Re-evaluation of known pericardial effusion to guide management or therapy</td>
<td></td>
</tr>
</tbody>
</table>

**Thoracic Aortic Disease**

In the absence of recent computed tomography (CT) or cardiovascular magnetic resonance (CMR), which are preferred for imaging beyond the proximal ascending aorta (Hiratzka 2010; Hiratzka 2016; Erbel 2014; Schiller 2017; Wright a&b 2018; Woo a&b 2018; Svensson 2013, Bhave 2018)

(See table in Additional Information for top normal size of the thoracic aorta.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening first degree relatives of individuals with a history of thoracic aortic aneurysm (defined as ≥ 50% above normal) or dissection or an associated high risk mutation in common.</td>
<td></td>
</tr>
<tr>
<td>Screening second degree relative of a patient with thoracic aortic aneurysm, when the first degree relative has aortic dilation, aneurysm, or dissection.</td>
<td></td>
</tr>
<tr>
<td>Six month follow up after initial finding of a dilated thoracic aorta, for assessment of rate of change.</td>
<td></td>
</tr>
</tbody>
</table>
• Annual follow up of enlarged thoracic aorta that is above top normal for age, gender, and size up to 4.4 cm
• Biannual (twice/yr) follow up of enlarged aortic root ≥ 4.5 cm or showing growth rate ≥ 0.5 cm/year
• Evaluation of the ascending aorta in the setting of a known or suspected connective tissue disease or genetic condition that predisposes to aortic aneurysm or dissection (e.g., Marfan syndrome, Ehlers Danlos or Loeys-Dietz syndromes,)
• At time of diagnosis of Marfan’s syndrome and 6 months thereafter for growth rate assessment, followed by annual imaging, increased to biannual (twice yearly) if diameter ≥4.5 or expanding >= 0.5 cm/yr
• Evaluation of aortic root in patient with Turner syndrome, along with aortic valve and coarctation evaluation, with normal results followed up at 5-10 years with repeat TTE, with abnormalities followed annually.
• Re-evaluation of known ascending aortic dilation or history of aortic dissection to establish a baseline rate of expansion (at 6 months from last assessment) or when the rate of expansion is excessive (repeat at 6 months)
• Re-evaluation of known ascending aortic dilation or history of aortic dissection with a change in clinical status or cardiac exam or when findings may alter management or therapy
• Re-evaluation (<1 y, generally twice a year) of the size and morphology of the aortic sinuses and ascending aorta in patients with a bicuspid AV and an ascending aortic diameter >4 cm with 1 of the following:
  1. Aortic diameter >4.5 cm
  2. Rapid rate of change in aortic diameter when an annual growth rate of ≥0.5 cm is suspected.
  3. Family history (first-degree relative) of aortic dissection
• Evaluation of a ruptured sinus of Valsalva aneurysm and resultant shunting
• Follow up post aortic medical treatment:
  o Acute dissection: Discharge, 1 month, 6 months, then annually
  o Chronic dissection: Discharge, years 1, 2, and 3.
• Follow up post either root repair or AVR plus ascending aortic root/arch repair: Discharge and annual

## Hypertension, Heart Failure, or Cardiomyopathy

### Hypertension

• Initial evaluation of suspected hypertensive heart disease

### Heart Failure & LV Function (Nagueh 2016; Yancy 2013; Patel 2013)

• Initial evaluation of known or suspected heart failure (HF) (systolic or diastolic) based on symptoms, signs, or abnormal test results
• Re-evaluation of known HF (systolic or diastolic) with a change in clinical status or cardiac exam without a clear precipitating change in medication or diet
• Prior to cardiotoxic chemotherapy, and subsequently for monitoring and follow up. (See Cardio-Oncology section under the Additional Information section.)
• Left ventricular function assessment at baseline prior to initiation of radiation to the anterior or left chest, at 5 years post initiation, and every 5 years thereafter (Lancellotti 2013b)
• Assessment in patients with a history of prior myocardial infarction and unknown left ventricular function.
• Re-evaluation of known HF (systolic or diastolic) when essential to guide therapy
- Worsening in ventricular arrhythmias, including after implantable cardioverter defibrillator (ICD) placement (Patel 2013)
- Unimproved heart failure symptoms in the first 6 months after cardiac resynchronization therapy (CRT initiation (Patel 2013))

**Device Candidacy (Pacemaker, ICD, or CRT)**
- Initial evaluation or re-evaluation after revascularization (≥ 3 months or 90 days) and/or myocardial infarction (≥ 40 days) and/or 3 months of optimal medical therapy to determine candidacy for device therapy and/or to determine optimal choice of device (Al-Khatib 2017)
- Initial evaluation for CRT device optimization after implantation
- Known implanted pacing device with symptoms possibly due to device complication or suboptimal pacing device settings

**Ventricular Assist Devices (VADs) and Cardiac Transplantation**
*(Stainback 2015)*
- To determine candidacy for ventricular assist device
- Optimization of ventricular assist device settings and assessment of response post device
- Re-evaluation for signs/symptoms suggestive of ventricular assist device-related complications
- Assessment of alterations in valvular function post assist device, particularly aortic regurgitation.
- Assessment for myocardial recovery post assist device
- Monitoring for rejection in a cardiac transplant recipient
- **Follow up of transplanted heart patients’ allograft with TTE:**
  - Every 3 months during the first year,
  - Every 6 months during the second year.
  - Alternatively, after each endomyocardial biopsy (Badano 2015)
- Cardiac structure and function evaluation in a potential heart donor

**Cardiomyopathies** *(Yancy 2013)*
- Initial evaluation of known or suspected cardiomyopathy (e.g., restrictive, infiltrative, dilated, hypertrophic, or genetic cardiomyopathy)
- Re-evaluation of known cardiomyopathy with a change in clinical status or cardiac exam or to guide therapy and manage post transplantation or post ventricular assist device (VAD) patients
- Screening evaluation for structure and function in first-degree relatives of a patient with an inherited cardiomyopathy
- Assessment of peripartum cardiomyopathy at onset and 3 months, then at 6 month intervals for minimum two years, longer if required for surveillance during and after trial of weaning medication, with additional follow up of 2 years after weaning trial completed. Follow up as needed, including for intended or actual recurrent pregnancy. (Tsang 2018; Hilfiker-Kleiner 2015)

**Adult Congenital Heart Disease** *(Warnes 2008; Baumgartner 2010)*
- Initial evaluation of known or suspected adult congenital heart disease
- Known adult congenital heart disease with a change in clinical status or cardiac exam
- Re-evaluation to guide therapy in known adult congenital heart disease.
- Evaluation of asymptomatic patients following repair of Atrial Septal Defect (ASD), Patent Foramen Ovale (PFO), Ventricular Septal Defect (VSD) or Patent Ductus Arteriosus (PDA), approvable within the first year following correction
• Routine surveillance (≥1 yr) of adult congenital heart disease following incomplete or palliative repair with residual structural or hemodynamic abnormal, even without a change in clinical status or exam.
• Asymptomatic, small ASD (<10 mm) shunt with normal right ventricular size, TTE follow up at 2 year intervals, more frequently for larger shunts with normal right ventricle
• Follow up after device closure of shunts, TTE at 24 hours, 2 month, 6 months, 1 year intervals thereafter.
• Asymptomatic small coronary arteriovenous fistula, TTE every 3 years
• After arterial switch repair of d-transposition of the great arteries, TTE at least every 2 years
• In congenitally corrected transposition of the great arteries, TTE every 1-2 years.

PEDiatric PATIENTS
(PATIENTS UNDER THE AGE OF 18)

Indications for an Initial Transthoracic Echocardiography (TTE)
(Campbell 2014)

• Hypertension.
• Palpitations, if one:
  o EKG is markedly abnormal
  o Family history at age <50 of either:
    ▪ sudden cardiac arrest or
    ▪ death, pacemaker, or ICD
  o History or family history of cardiomyopathy
• Chest pain, if one of:
  o Exertional
  o Abnormal EKG
  o Family history with unexplained sudden death or cardiomyopathy
  o Associated features of the presentation are suspicious for cardiac origin (e.g. rheumatic fever, endocarditis)
• Syncope, if any one of:
  o History, exam, and/or EKG provide suspicion of structural heart disease
  o Exertional, especially mid exertional due to high correlation with structural heart disease and/or arrhythmic disorder
  o Unexplained post exertional
  o Family history at age <50 of either one:
    ▪ sudden cardiac death/arrest or
    ▪ a pacemaker or ICD
  o There is a family history of cardiomyopathy
• Presyncope, when all apply:
  (Salerno 2018; Anderson 2016; Cote 2001; Shen 2017)
  o When recurrent and well documented
  o With good documentation that neither neutrally mediated syncope (NMS) nor orthostasis is the etiology
  o When structural or arrhythmia related structural heart disease is a suspected cause
• **Without** prior echocardiographic diagnosis during the course of the current clinical status

• Signs and/or symptoms of heart failure, including, but not limited to any one of:
  - Respiratory distress
  - Poor peripheral pulses
  - Feeding difficulty
  - Decreased urine output
  - Edema
  - Hepatomegaly

• Abnormal physical findings, including any one of:
  - Clicks, snaps, or gallops
  - Fixed and/or abnormally split S2
  - Decreased pulses.
  - Central cyanosis without explanation.

• Arrhythmia, if one of:
  - Supraventricular tachycardia
  - Ventricular tachycardia
  - Frequent premature ventricular contractions (PVCs) (≥ 10% of beats/24 hours)

• Murmur
  - Pathologic sounding or harsh murmur, diastolic murmur, or continuous murmur, present in such a way as to have a reasonable belief that congenital heart disease might be present
  - An otherwise innocent murmur, but in the presence of signs, symptoms, or findings of cardiovascular disease

• Abnormal basic data, including any one of:
  - Clearly abnormal electrocardiogram (ECG)
  - Desaturation on pulse oximetry, with concern for cardiac cause
  - Abnormal cardiac structure on a chest x-ray

• Suspected pulmonary hypertension

• Patients with prosthetic valves

• Signs and symptoms of endocarditis, including either one of:
  - In the absence of positive blood cultures, including all patients with an indwelling catheter who present with unexplained fever
  - Positive blood cultures suggestive of infective endocarditis.

• Thromboembolic Related, either one:
  - Patients on anticoagulants, when required to evaluate for thrombus
  - Thromboembolic events or stroke (Saric 2016)

• Systemic hematologic diseases that are associated with cardiac findings, either one:
  - Sickle cell disease
  - HIV infection
• Oncologic Therapy, any one:
  o Cardiotoxic chemotherapy, before or following exposure
  o Radiation therapy to chest, before and long term follow up (Lancellotti 2013)
    (See Cardio-Oncology section under Additional Information section)

• Inflammatory & Autoimmune, any one:
  o Suspected Rheumatic Fever
  o Systemic lupus erythematosus
  o Takayasu Arteritis
  o Kawasaki Disease (Newburger 2004)

• Suspicion of Structural Disease, any one:
  o Premature birth where there is suspicion of a Patent Ductus Arteriosus.
  o Adopted children for whom there is a suspicion of congenital heart disease (e.g. HCM), based on physical or clinical findings when there is a lack of family history information.
  o Vascular Ring, based upon either one:
    ▪ Difficulty breathing with stridor and eating solid foods that might suggest a vascular ring
    ▪ Abnormal barium swallow or bronchoscopy suggesting a vascular ring
  o Ventricular pre-excitation with no clinical or Holter findings to suggest an arrhythmia, but with suspicion of Ebstein’s anomaly, Tumors, HCM or clinical signs of heart failure

• Genetic & Syndrome Related, any one:
  o Genotype positive for cardiomyopathy, family history of hypertrophic cardiomyopathy, other heritable cardiomyopathy, genetic disorder at high risk for cardiovascular involvement, heritable pulmonary arterial hypertension
  o Syndromic patients with a known syndrome associated with congenital or acquired heart disease (Down’s syndrome, Noonan’s syndrome, 22Q deficiency syndrome, William’s syndrome, Trisomy Thirteen, Trisomy Eighteen, Allagille syndrome, chromosomal abnormality associated with cardiovascular disease, abnormal viscera, or cardiac situs).
  o Known or suspected connective tissue diseases that are associated with congenital or acquired heart disease. (e.g. Marfan’s, Loey-Dietz)
  o Known or suspected muscular dystrophies associated with congenital heart disease.
  o Mitochondrial or metabolic storage disease (e.g. Fabry’s disease)
  o Patients with a first degree relative who is known to have a genetic acquisition, such as cardiomyopathies (hypertrophic, dilated, arrhythmogenic right ventricular dysplasia, restrictive, left ventricular noncompaction).

• Maternal-Fetal Related, any one:
  o Maternal infection during pregnancy or delivery with potential fetal/neonatal cardiac sequelae
  o Maternal phenylketonuria
  o Suspected cardiovascular abnormality on fetal echocardiogram

• Previously normal echocardiogram with either one:
  o A change in cardiovascular status
  o A new family history suggestive of heritable heart disease

_Indications for Follow-up Echocardiography in Pediatric Patients_ (Davey 2004)
General Indications for Postoperative/Post-Procedure Pediatric Patients:

- Upon first outpatient visit, to establish the patient’s new hemodynamic baseline, and assess for potential complications such as pericardial effusions, residual shunts, obstruction at the site of repair, patency of surgical shunts, etc.
- On subsequent visits as needed to monitor as medications are weaned or to evaluate need for further surgical intervention.

Specific Indications for Follow-Up Echocardiograms in Pediatric Patients:

- Congenital Heart Disease (CHD) with a change in clinical status.
- Kawasaki Disease, upon diagnosis, two weeks later and 4 to 6 weeks later. If any coronary abnormalities are present, echocardiograms may need to be more frequent as clinically indicated. (Newburger 2004)
- Valvular regurgitation that is more than mild in asymptomatic child may require annual echocardiogram to assess chamber size and progressive regurgitation.
- Valvular stenosis: (Peak Doppler [mm Hg]: Mild < 40, Moderate 40-60, Severe >60)
  - Pulmonic Stenosis (PS): (Peng 2018)
    - Mild to moderate PS in an infant up to 1-2 year: repeat at 2 weeks and 6 weeks to assess for increasing gradient as PVR drops.
    - Mild stenosis post infancy (6 weeks): every 6 months until age 2 years, and
      - If the gradient regresses to < 25 mm Hg, reduce follow up to every 5 years.
      - If the gradient remains 25-40 after one year, follow up in one year and then every 3 years, if stable
    - Moderate stenosis post infancy (6 weeks): every 1-2 years
    - Post intervention for severe: every year for two years, then every 3-5 years, if stable; also depends on result of valvuloplasty
  - Aortic Stenosis (AS): (Aortic regurgitation rarely alone, usually with aortic stenosis) (Brown 2018)
    - Mean Gradients [mm Hg] mild < 25, moderate 25-40, severe > 40
    - Mild AS in an infant: every 6 months, or more depending on the patient’s clinical status and rate of progression.
    - Moderate AS in an infant: every 1-3 months to assess for progression and indication for valvuloplasty.
    - Mild in an asymptomatic child: every 1-2 years to assess for progression of stenosis
    - Moderate AS in an asymptomatic child: at least every 6-12 months to assess for progressive stenosis, left ventricular hypertrophy, post-stenotic dilation.
    - In asymptomatic adolescents, annual TTE for aortic stenosis with mean Doppler gradient > 30 mm Hg or peak instantaneous gradient >50 mm Hg, and every 2 years for patients with lesser gradients. (Warnes 2008)
  - Aortic valve prosthesis (Brown 2018)
    - Mechanical: every 6-12 months
    - Bioprosthetic: every 3-6 months
  - Mitral Stenosis (MS):
    - MS from Rheumatic Heart Disease on no meds with no symptoms may require an annual echocardiogram.
    - MS with CHF on medications may require an echocardiogram every three to 6 months.
  - Tricuspid Stenosis (TS):
    - A rare indication that would be based on the patient’s course of treatment and clinical symptoms.
- Shunt lesions:
Ventricular Septal Defect (VSD): (Fulton 2018)
(Pulmonary to systemic shunt ratio: small < 1.5, moderate 1.5-2.0, large > 2.0) (Oakley 2008)

- Infants with VSD: repeat echocardiogram at 2 weeks and 6 weeks to assess for increasing shunt as the PVR drops.
- Small VSD: annual echocardiogram to assess for associated lesions depending on location of defect, i.e. aortic regurgitation, development of DCRV (double chambered right ventricle); after 6 months, if the murmur is gone repeat echo is not necessary, if otherwise stable.
- Moderate to large VSD, asymptomatic: Close follow up in response to patient’s clinical status, to assess for LV dilation, mitral regurgitation, and associated lesions; if after one year, there is no pulmonary hypertension or left ventricular dilation, echo can be performed every 2 years, if stable.

Atrial Septal Defect (ASD): (Vick 2018)

- Moderate to large secundum ASD (≥ 3 mm or shunt ≥ 1.5:1) and all primum, sinus venosus, and coronary sinus ASDs, at 6 months intervals to assess for progressive RV dilation, tricuspid regurgitation.
- Small secundum (< 3mm and shunt < 1.5: 1) ASD: every 1-3 years, depending on age of patient.

NOT INDICATED unless there is treating physician input during a peer-to-peer discussion that supports the need for an echocardiogram.

- Chest pain that changes with inspiration.
- Clear Orthostatic Hypotension.
- Chest pain that increases upon palpation.
- High cholesterol/triglycerides in children who have no other indication for an echocardiogram.
- Isolated prolonged QT syndrome with no clinical or Holter evidence of an arrhythmia or other physical findings.

NOT INDICATED:

- Attention Deficit Disorder with no other relevant findings.
- A sports physical with normal history, physical and ECG.
- Parental request as the sole reason for an echocardiogram.
- All patients with a 1st degree relative with an inherited form of cardiomyopathy where the patient has been definitively excluded by genetic testing.

ADDITIONAL INFORMATION

I. Imaging Surveillance for Cardiotoxic Chemotherapy
(Plana 2014; Zamorano 2016; Maleszewski 2018; Herrmann 2014)

TTE is the method of choice for the evaluation of patients before, during, and after cancer therapy. Ideally accuracy prefers that 3D and global longitudinal strain (GLS) are part of the exam, and serum troponin (Tn) should also be measured. However, GLS and Tn might not have been performed, in which case determinations might need to be made with LVEF only. Serum troponin (Tn) and GLS abnormalities constitute an abnormal assessment of LV function, because their abnormalities frequently herald an imminent fall in LVEF. (Plana 2014; Zamorano 2016)

CMR is recommended when TTE has been unreliable and/or candidacy for cardiotoxic chemotherapy based upon LVEF is questionable (Plana 2014) (MUGA can also be considered when TTE is inadequate and CMR is not available).
MUGA is accurate and reproducible, but lacks information about pericardium and valves, incurs repeated radiation exposure, and is inaccurate during an irregular cardiac rhythm (Plana 2014).

**Surveillance guidelines** are somewhat complex, possibly beyond the scope of this guideline, especially in patients with additional risk factors for LV dysfunction (Herrmann 2014). As with all guidelines, adequate information for complex decisions might be impractical to acquire. However, if the reader requires more rigorous recommendations, they are summarized concisely in the table below. **Necessity determinations might not require strict adherence to this table at this time, but it is here to serve as a helpful reference for the reader, if desired.**

### TTE Surveillance Strategy for Cardiotoxic Chemotherapy (Optional Information)
(Plana 2014; Herrmann 2014; Zamorano 2016; Maleszewski 2018)

<table>
<thead>
<tr>
<th>Suspected/Detected LV Status at Baseline, During, or After Completion of Therapy (LVEF is minimum information, GLS and Tn can reveal early LV dysfunction prior to LVEF)</th>
<th>Type I Anthracyclines: Doxorubicin, Epirubicin, Idarubicin Mitozantrone (Asnani 2018)</th>
<th>Type II Trastuzumab, Labatinib, Pertuzumab, Sorafenib, Sunitinib, Bevacizumab, Bortezomib **</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Normal:</strong> EF is ≥ 55%, troponin is negative, and global longitudinal strain (GLS) &gt; lower limit of normal*</td>
<td>Normal assessment: Assess after a cumulative dose &gt; 200mg/M² (or its anthracycline equivalent) and prior to each additional 50 mg/M², and at completion of therapy, and 6 months later, and for cumulative dose &gt; 300 mg/M² include assessment at 1 year and at 5 years post completion of therapy. (Zamorano 2016)</td>
<td>Normal assessment: Assess every 3 months during therapy and at 6 months post completion of therapy</td>
</tr>
<tr>
<td>Abnormal: any one of:</td>
<td>Abnormal assessment: Assess after every cycle, and reassess for verification 2-3 weeks later if a drop in LV function has been detected/suspected; assess 6 months post completion of therapy, followed by reassessment every 6 months until stable, and for cumulative dose &gt; 300 mg/M² include assessment at 1 year and 5 years post completion of therapy. (Zamorano 2016)</td>
<td>Abnormal assessment: Assess after every cycle, and reassess for verification 2-3 weeks later if a drop in LV function has been detected/suspected; assess 6 months post completion of therapy, and if still not stable reassess every 6 months until stable.</td>
</tr>
<tr>
<td>o GLS reduced ≥ 10-15% below normal (about 20 is normal*, labs vary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Troponin positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o LVEF started &lt; 55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o During therapy LVEF drops below 55% AND ≥ 5 points for a symptomatic/≥10 points for an asymptomatic patient. (Maleszewski 2018)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* GLS of (negative) 20 is generally normal, but individual labs vary. (Collier 2017)
** Imatinib, rarely cardiotoxic, does not require surveillance of LV function. (Floyd 2018)
II. Aortic Root Disease

(Hiratzka 2010; Erbel 2014; Schiller 2017; Wright a&b 2018; Woo a&b 2018; Svensson 2013; Doherty 2017; Bhave 2018)

Indications for aortic root disease in this document are further explained in the section below:

- In asymptomatic stable patients with aortic dilation:
  
  1. All 3 modalities of imaging, computed tomography (CT), magnetic resonance imaging (MRI), Echocardiography (TTE and TEE) appear to be reasonable alternatives for the diagnosis and surveillance of aortic pathology with 3 caveats:
     - TTE accuracy is limited to the aortic valve, aortic root, and proximal ascending aorta, so that conditions requiring evaluation of more distal portions are better imaged with CT or MRI. TEE’s invasive nature and weak visualization of the distal ascending aorta, proximal arch, and abdominal aorta make it suboptimal as well. TTE might be satisfactory for surveillance in pathology with greatest prominence localized to the proximal ascending aorta (in bicuspid aortic valve disease or when prior CT or MRI showed the most dilated portion of the aorta to be visible on TTE), until its dimensions approach surgical indications, at which time more precise or comprehensive imaging with CT and MRI might be more appropriate.
     - MRI is recommended for Loeys Dietz, Ehlers-Danlos, and certain other noted genetic mutations, wherein surgical intervention is recommended at 4.2 cm.
     - While still usable for degenerative aortic dilation, echocardiography appears less favorable than CT or MRI for this indication.
     - CT and MRI were recommended for postoperative evaluation and periodic follow up. Echocardiography was not a noted recommendation for this category.

  2. The flow diagram from the 2010 ACC Thoracic Aortic Disease Guideline gives reasonable recommendations for surveillance of degenerative aortic root disease, with annual imaging for enlargement above normal up to 4.4 cm, biannual for 4.5-5.4 or more cm (surgical intervention notwithstanding). See Table below for age, gender, and body size determined upper limits of normal for the thoracic aorta, ascending and descending:
An aneurysm is defined as >50% greater than top normal. (Cikach 2018; Hiratzka 2010)

It would be reasonable to allow echocardiography as a less favorable alternative to CT and MRI, based upon the judgement of the ordering physician and local expertise with imaging (The definition of a thoracic aortic aneurysm is dilation of at least 50% above the normal) (Cikach 2018; Hiratzka 2010).

3. An echocardiogram is recommended at the time of diagnosis of Marfan syndrome to determine the aortic root and ascending aortic diameters and 6 months thereafter to determine the rate of enlargement of the aorta. Subsequently, patients with Marfan’s require annual imaging, with increase to biannual imaging at a diameter of 4.5 cm or when >0.5 cm/yr expansion has been noted.

4. Patients with bicuspid aortic valve and aortic dilation over 4.0 cm require annual imaging. This would increase to biannual imaging in the event of any one of the additional conditions: diameter >4.5 cm, rapid rate of change 0.5 cm/yr, or a family history of a first degree relative with aortic

### Aortic diameters: Upper limits of normal

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>BSA (m²)</th>
<th>Ascending aorta (mm)</th>
<th>Descending aorta (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Women (n = 1,147)</td>
<td>Men (n = 1,805)</td>
</tr>
<tr>
<td>&lt; 45</td>
<td>&lt; 1.70</td>
<td>33.8</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1.70–1.89</td>
<td>34.4</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>1.90–2.09</td>
<td>35.0</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>&gt; 2.1</td>
<td>NA</td>
<td>38.3</td>
</tr>
<tr>
<td>45–54</td>
<td>&lt; 1.70</td>
<td>35.2</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>1.70–1.89</td>
<td>37.2</td>
<td>38.1</td>
</tr>
<tr>
<td></td>
<td>1.90–2.09</td>
<td>38.9</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td>&gt; 2.1</td>
<td>40.6</td>
<td>40.6</td>
</tr>
<tr>
<td>55–64</td>
<td>&lt; 1.70</td>
<td>36.9</td>
<td>36.3</td>
</tr>
<tr>
<td></td>
<td>1.70–1.89</td>
<td>37.0</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td>1.90–2.09</td>
<td>39.0</td>
<td>41.2</td>
</tr>
<tr>
<td></td>
<td>&gt; 2.1</td>
<td>42.0</td>
<td>43.1</td>
</tr>
<tr>
<td>≥ 65</td>
<td>&lt; 1.70</td>
<td>37.5</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>1.70–1.89</td>
<td>39.2</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>1.90–2.09</td>
<td>42.7</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td>&gt; 2.1</td>
<td>NA</td>
<td>42.4</td>
</tr>
</tbody>
</table>

*Upper limits of normal are 2 standard deviations above the mean. Not calculated if there were fewer than 6 patients in a group.*

BSA = body surface area; NA = not available

(Table from Wolak 2008, as adapted by Cikach 2018)
dissection.

5. Patients with Loeys-Dietz syndrome or a confirmed genetic mutation known to predispose to aortic aneurysms and aortic dissections (TGFBR1, TGFBR2, FBN1, ACTA2, or MYH11) should undergo **complete aortic imaging** at initial diagnosis and 6 months thereafter to establish if enlargement is occurring. MRI is recommended in this setting.

6. Patients with Loeys-Dietz syndrome should have yearly **magnetic resonance imaging** from the cerebrovascular circulation to the pelvis.

7. Patients with Turner syndrome should undergo imaging of the heart and aorta for evidence of bicuspid aortic valve, coarctation of the aorta, or dilatation of the ascending thoracic aorta. If initial imaging is normal and there are no risk factors for aortic dissection, repeat imaging should be performed every 5 to 10 years or if otherwise clinically indicated. If abnormalities exist, annual imaging or otherwise appropriate follow-up imaging should be done.

8. Computed tomographic imaging or magnetic resonance imaging of the thoracic aorta is reasonable after a Type A or B aortic dissection or after prophylactic repair of the aortic root/ascending aorta.

9. Echocardiography is the primary modality for evaluation of the sinus of Valsalva aneurysms and associated shunting secondary to rupture (Schiller 2018).

10. Computed tomographic imaging or magnetic resonance imaging of the aorta is reasonable at 1, 3, 6, and 12 months post un-operated dissection and, if stable, annually thereafter so that any threatening enlargement requiring surgery/intervention can be detected in a timely fashion.

11. Postoperative surveillance recommendations are taken from the 2010 ACC Thoracic Aortic Disease Guideline: See Table below (Hiratzka 2010)
Table 17. Suggested Follow-Up of Aortic Pathologies After Repair or Treatment

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Interval</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dissection</td>
<td>Before discharge, 1 mo, 6 mo, yearly</td>
<td>CT or MR, chest plus abdomen TTE</td>
</tr>
<tr>
<td>Chronic dissection</td>
<td>Before discharge, 1 y, 2 to 3 y</td>
<td>CT or MR, chest plus abdomen TTE</td>
</tr>
<tr>
<td>Aortic root repair</td>
<td>Before discharge, yearly</td>
<td>TTE</td>
</tr>
<tr>
<td>AVR plus ascending</td>
<td>Before discharge, yearly</td>
<td>TTE</td>
</tr>
<tr>
<td>Aortic arch</td>
<td>Before discharge, 1 y, 2 to 3 y</td>
<td>CT or MR, chest plus abdomen</td>
</tr>
<tr>
<td>Thoracic aortic stent</td>
<td>Before discharge, 1 mo, 2 mo, 6 mo, yearly Or 30 days*</td>
<td>CXR, CT, chest plus abdomen</td>
</tr>
<tr>
<td>Acute IMH/PAU</td>
<td>Before discharge, 1 mo, 3 mo, 6 mo, yearly</td>
<td>CT or MR, chest plus abdomen</td>
</tr>
</tbody>
</table>

*US Food and Drug Administration stent graft studies usually required before discharge or at 30-day CT scan to detect endovascular leaks. If there is concern about a leak, a predischarge study is recommended; however, the risk of renal injury should be borne in mind. All patients should be receiving beta blockers after surgery or medically managed aortic dissection, if tolerated. Adapted from Erbel et al (539).

AVR indicates aortic valve replacement; CT, computed tomographic imaging; CXR, chest x-ray; IMH, intramural hematoma; MR, magnetic resonance imaging; PAU, penetrating atherosclerotic ulcer; and TTE, transthoracic echocardiography.

(Table from Hiratzka 2010)

III. General Information on TTE
(Douglas 2011; Campbell 2014; Nishimura 2014; Doherty 2017)

Frequency of Echocardiography Studies

- Judgement required, based upon:
  - Stability or change in patient symptoms, exam, lab, and/or X ray data
  - Stability of underlying condition being followed
  - Likelihood of repeat test affecting management
  - Specifics for cardio-oncology, valvular disease, etc.
Examples of non-approvable repeat imaging:

- For same imaging test less than 52 weeks apart unless specific guideline criteria states otherwise.
- For different imaging tests of same anatomical structure but different imaging type less than six (6) weeks ago (i.e. CT, MRI and currently requesting echocardiogram) unless specific guideline criteria states otherwise, and/or there is approval following high level review.
- Additional images from same type of study (e.g. due to poor quality).

**Pediatric Post-Operative Patients**

Congenital heart disease, which requires surgical palliation, is, by its very nature, quite varied. No written consensus criteria currently exists for monitoring post-operative patients, but rather is based upon the clinical experience and training of the Pediatric Cardiologists caring for the patient. Criteria for performing an echocardiogram in the out-patient setting will vary greatly based upon whether the patient has a complex lesion, which must be repaired in stages, had post-operative complications, or is on medications which will be weaned over the ensuing weeks.

**Murmurs**

A harsh murmur, diastolic murmur, or continuous murmur would be an indication for an echocardiogram. Soft systolic murmurs and vibratory murmurs in general would not be indications for an echocardiogram. There is an important caveat in regards to age. Existent literature suggests that young children particularly under the age of three can have what appear to be unremarkable murmurs that result in organic heart disease even when examined by experts. Great leeway should therefore be given when echocardiograms are performed under the age of 3 years.

**TTE Accuracy**

In general, transthoracic echocardiography (TTE) is adequate for diagnosing infective endocarditis (IE) and for identifying vegetations when image quality is good. Contemporary TTE has improved the diagnostic accuracy of IE with enhanced image quality; it may reduce the need for TEE. However, accuracy may be reduced because of technical difficulties like obesity, chronic obstructive pulmonary disease, chest-wall deformities etc. Furthermore, the higher resolution of TEE can provided superior visualization of smaller vegetations.

**TTE versus TEE**

Specific situations where transesophageal echocardiography (TEE) is preferred over TTE and may be an appropriate initial study for evaluation of prosthetic device, suspected peri-annular complications, children with complex congenital cardiac lesions, selected patients with Staphylococcus aureus bacteremia, etc. Visualization of left atrial thrombus is far superior with TEE, which is the recommended strategy.

**Abbreviations**

- ASD - atrial septal defect
- CABG - coronary artery bypass grafting surgery
- CAD - coronary artery disease
- CMR - cardiovascular magnetic resonance
CRT  cardiac resynchronization therapy
CT   computed tomography
ECG  electrocardiogram
GLS  global longitudinal strain (measure of left ventricular function)
HCM  hypertrophic cardiomyopathy
HF   heart failure
ICD  implantable cardioverter-defibrillator
LV   left ventricular
LVEF left ventricular ejection fraction
MI   myocardial infarction
PDA  patent ductus arteriosus
PFO  patent foramen ovale
SVT  supraventricular tachycardia
TAVR transcatheter aortic valve replacement
TEE  transesophageal echocardiogram
TIA  transient ischemic attack
Tn   troponin
TTE  transthoracic echocardiogram
VPC  ventricular premature contraction
VSD  ventricular septal defect
VT   ventricular tachycardia
REFERENCES


Benditt D. Syncope in adults: Epidemiology, pathogenesis, and etiologies. UpToDate, Waltham, MA: March, 2018. Available at: https://www.uptodate.com/contents/search?search=syncope&sp=0&searchType=PLAIN_TEXT&source=USER_INPUT&searchControl=TOP_PULLDOWN&searchOffset=1&autoComplete=false&language=en&max=10&index=&autoCompleteTerm= Retrieved April 24, 2018


Floyd J, Cardiotoxicity of nonanthracycline cancer chemotherapy agents. UpToDate: May 2018. Available at: https://www.uptodate.com/contents/cardiototoxicity-of-nonanthracycline-cancer-chemotherapy-agents?search=cardiotoxicity%20chemotherapy&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1# Retrieved June 13, 2018


Tsang W, Lang R. Peripartum cardiomyopathy: Treatment and prognosis, UpToDate, Waltham MA; March, 2018. Available at: https://www.uptodate.com/contents/peripartum-cardiomyopathy-treatment-and-prognosis?search=peripartum%20cardiomyopathy&source=search_result&selectedTitle=1~51&usage_type=default&display_rank=1 Retrieved April 24, 2018


Woo YJ, Green CL. Clinical manifestations and diagnosis of thoracic aortic aneurysm, UpToDate. Waltham, MA; March, 2018a. Available at: https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-thoracic-aortic-aneurysm?search=thoracic%20aorta&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 Retrieved April 24, 2018


Wright MJ, Connolly HM. Genetics, clinical features, and diagnosis of Marfan syndrome and related


INTRODUCTION

➢ Transesophageal echocardiography (TEE) enables cardiac ultrasonic imaging from within the esophagus, which provides a window for enhanced quality images as well as additional views, beyond that acquired by standard transthoracic echocardiography (TTE).

➢ TEE can be used as a complement to TTE or as a superior alternative, depending upon the clinical scenario.

INDICATIONS FOR TRANSESOPHAGEAL ECHOCARDIOGRAPHY (TEE)
(Ayres 2005; Douglas 2011; Hahn 2013; Flachskampf 2014; Manning, 2018)

<table>
<thead>
<tr>
<th>TEE as Initial or Supplemental Test—General Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use of TEE after nondiagnostic TTE or when there is a high likelihood of a nondiagnostic TTE due to patient characteristics or inadequate visualization of relevant structures, such as valvular heart disease, prosthetic valve dysfunction, left atrial thrombus, patent foramen ovale, atrial baffles post Fontan, Senning, or Mustard procedures, etc. (Ogbara 2011; Flachskampf 2014; Lancellotti 2013)</td>
</tr>
<tr>
<td>• Re-evaluation of prior TEE finding for interval change (e.g., resolution of thrombus after anticoagulation, resolution of vegetation after antibiotic therapy) when a change in therapy is would be based upon the findings Any ONE of the following for procedural and surgical guidance, especially when TEE is superior or complimentary to TTE (Thys 2010; Porter 2015):</td>
</tr>
<tr>
<td>• Guidance during percutaneous/transcatheter noncoronary cardiac interventions including but not limited to closure device placement, left atrial appendage closure, ASD closure, radiofrequency ablation, and percutaneous valve procedures (Flachskampf 2014).</td>
</tr>
<tr>
<td>• For intraoperative noncoronary cardiac repair, including, but not limited to, valve repair, congenital defect repair, unanticipated findings or complications of cardiac surgery requiring intraoperative imaging.</td>
</tr>
<tr>
<td>• Suspected acute aortic pathology including but not limited to dissection/transsection when computed tomography angiogram (CTA) and magnetic resonance imaging (MRI) are either not available or not conclusive or not thought to be the optimal first imaging test for clinical reasons (Bhave 2018).</td>
</tr>
<tr>
<td>• Dilated aortic sinuses or ascending aorta or a bicuspid aortic valve (stages A and B), to evaluate the presence and severity of AR, when TTE is inadequate.</td>
</tr>
</tbody>
</table>

| TEE as Initial or Supplemental Test—Valvular Disease (Nishimura 2014; Doherty 2017) |
|—————————————————————————————————————————————————|
| Evaluation of valvular structure, native and prosthetic, and function to assess suitability for, and assist in planning of, an intervention |
- Evaluation of the mean mitral gradient and pulmonary artery pressure in mitral stenosis, when there is a discrepancy between resting Doppler echocardiographic findings and clinical symptoms or signs, exercise stress echocardiography is not possible, AND TTE is inadequate

- Discordance between clinical assessment and TTE assessment of the severity of MR
- Discordance between clinical assessment and TTE assessment of the severity of AR
- To diagnose infective endocarditis and cardiac complications of infective endocarditis, with a moderate or high pretest probability (e.g., staph bacteremia, fungemia, prosthetic heart valve, or intracardiac device)
- Re-evaluation of infective endocarditis (IE) in a patient with a change in clinical status or cardiac examination (e.g., new murmur, embolism, persistent fever, heart failure (HF), abscess, or atrioventricular heart block (Saric 2016)
- Re-evaluation of IE if the patient is at high risk for progression/complications or for other potential treatment-altering changes, when TTE is inadequate.

**TEE as Initial or Supplemental Test—Embolic Event**

Evaluation of suspected cardiac mass, tumor, or thrombus, or for evaluation of potential cardiac source of embolism when there is no identified noncardiac source (Saric 2016)

**TEE as Initial Test—Atrial Fibrillation/Flutter**

Evaluation to facilitate clinical decision making with regards to anticoagulation, cardioversion, and/or radiofrequency ablation

**TAVR (Transcatheter Aortic Valve Replacement/Repair) (Doherty 2017, Otto 2017)**

- Accurate pre-procedural assessment of annular size and shape, number of cusps, and degree of calcification, when computed tomography (CT) cannot be performed (i.e. limited role)
- Pre-, peri- and post procedural assessment of degree of aortic regurgitation (including valvular and paravalvular) with suspicion of valve dysfunction, if TTE is inadequate
- Intraprocedural guidance of TAVR or paravalvular leak closure (Thys 2010; Porter 2015; Flachskampf 2014)
- Assessment of post procedural stroke with suspicion of valve dysfunction, if TTE is inadequate

**Percutaneous/Transcatheter Mitral Valve Repair/Replacement (Doherty 2017)**

- Determination of patient eligibility for procedures such as PMBV, TMVR, edge-to-edge repair, artificial chord implantation, annuloplasty, PVML closure
- Pre-procedural evaluation for TMVR, mitral annuloplasty, or PVML closure can be performed in addition to CT imaging (Wunderlich 2018)
- Exclude the presence of intracardiac mass, thrombus, or vegetation prior to (within 3 days) the procedure
- Intraprocedural guidance of transcatheter mitral valve repair or replacement (Thys 2010; Porter 2015; Flachskampf 2014)

**Left Ventricular Assist Devices (Stainback 2015)**

- Preoperative evaluation for suitability, intraoperative monitoring during placement, and immediate postoperative evaluation of function
ADDITIONAL INFORMATION

Frequency of Echocardiography Studies

- Judgement required, based upon:
  - Stability or change in patient symptoms, exam, lab, and/or X ray data
  - Stability of underlying condition being followed
  - Likelihood of repeat test affecting management

Examples of non-approvable repeat imaging:

- For same imaging test less than 52 weeks (1 year) apart unless specific guideline criteria states otherwise.

- For different imaging tests of same anatomical structure but different imaging type less than six (6) weeks ago (for example, a recent CT or MRI and currently requesting echocardiogram), unless specific guideline criteria states otherwise, and/or there is approval following high level review.

- Additional images from same type of study (e.g. due to poor quality).

Abbreviations

AR  aortic regurgitation
CABG  coronary artery bypass grafting surgery
CAD  coronary artery disease
CMR  cardiovascular magnetic resonance
CT  computed tomography
ECG  electrocardiogram
HF  heart failure
LV  left ventricular
MI  myocardial infarction
MR  mitral regurgitation
PBMV  percutaneous balloon mitral valvuloplasty
PVML  paravalvular mitral leak
RV  right ventricle
TEE  transesophageal echocardiography
TIA  transient ischemic attack
TTE  transthoracic echocardiography
TMVR  transcatheter mitral valve replacement
TR  tricuspid regurgitation
REFERENCES


CPT Codes: 93350, 93351, +93320, +93321, +93325, +93352

Introduction

➢ Stress echocardiography (SE) refers to ultrasound imaging of the heart during exercise electrocardiography (ECG) testing, during which visualized wall motion abnormalities can provide evidence of significant coronary artery disease (CAD).

➢ While drug-induced stress with dobutamine can be a legitimate alternative to exercise stress testing in patients who are unable to exercise, this guideline does not require use of this modality for practical reasons with rare noted exceptions. Hence, reference in this document to SE almost always refers to exercise stress echocardiography.

➢ Although SE provides comparable accuracy without radiation relative to myocardial perfusion imaging (MPI), scenarios which do not permit safe and effective use of SE might be better suited for alternative stress imaging with MPI, rarely cardiovascular magnetic resonance imaging (CMR) or positron emission tomography (PET), and in some cases, non-stress imaging such as coronary computed tomography angiography (CCTA) (Askew 2018; Douglas 2011; Metz 2007; Einstein 2012; Fazel 2011; Fleischmann 1998; Heijenbrok-Kal 2007; Hirschfeld 2018; Marwick 2003; Pellikka 2007; Schinkel 2003; Scott-Moncrieff 2011; Sicari 2008; Sicari 2017; Yao 2003; Zhang 2014).

➢ Scenarios that support MPI over SE are detailed in the Additional Information section and include:
   (Henzlova 2016; Askew 2018; Wolk 2013)
   • Poor quality echocardiographic images
   • Inability to exercise
   • Specific comorbidities
   • ECG-related wall motion abnormalities.
   • Elevated coronary risk

➢ CAD stenosis ≥ 50% is considered clinically significant or obstructive CAD, where CAD and ischemic heart disease (IHD) are symptoms. Hemodynamically or functionally significant CAD means the degree of stenosis is severe enough to cause ischemia. This is discussed in more detail in the Additional Information section (Fihn 2012; Wolk 2013; Montalescot 2013; Gerber 2018; Tobis 2007).

➢ Stable patients without known CAD fall into 2 categories:
   (Fihn 2012; Wolk 2013; Montalescot 2013)
   ➢ Asymptomatic patients, for whom Global Risk of CAD events can be determined from coronary risk factors using calculators available online. (see Part III in the Additional Information section)
Symptomatic patients, for whom we estimate the Pretest Probability that their chest-related symptoms are due to clinically significant (≥ 50%) CAD (see below):

The 3 Types of Chest Pain or Discomfort

- **Typical Angina (Definite)** is defined as including all 3 of these characteristics:
  1) Substernal chest pain or discomfort with characteristic quality and duration
  2) Provoked by exertion or emotional stress
  3) Relieved by rest and/or nitroglycerine

- **Atypical Angina (Probable)** has only 2 of the above characteristics

- **Nonanginal Chest Pain/Discomfort** has only 0-1 of the above characteristics

Once the type of chest pain has been established from the medical record, the Pretest Probability of obstructive CAD is estimated from the Diamond Forrester Table below, recognizing that in some cases multiple additional coronary risk factors could increase pretest probability:

(Wolk 2013; Fihn 2012)

**Diamond Forrester Table**

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Gender</th>
<th>Typical/Definite Angina Pectoris</th>
<th>Atypical/Probable Angina Pectoris</th>
<th>Nonanginal Chest Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;=39</td>
<td>Men</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>40–49</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>50–59</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>&gt;=60</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

- **Very low**: < 5% pretest probability of CAD, usually not requiring stress evaluation (Fihn 2012)
- **Low**: 5-10% pretest probability of CAD
- **Intermediate**: 10% - 90% pretest probability of CAD
- **High**: > 90% pretest probability of CAD

**INDICATIONS for STRESS ECHO**

(Fihn 2012; Wolk 2013; Montalescot 2013; Pellikka 2007; Marwick 2003; Sicari 2008; Sicari 2017; Douglas 2011; Yao 2003)

- Suspected CAD
  (Without known history of CAD)

1. Symptomatic patients without known CAD
• Low pretest probability, if ECG is uninterpretable AND patient can exercise.
• Intermediate pretest probability, if ECG is uninterpretable (Wolk, 2014).
• High pretest probability
• Repeat testing in patient with recurrent symptomatic presentation and negative result over 2 years ago
• Repeat testing in patient with new or worse symptoms and negative result at least one year ago

2. Asymptomatic patients without known CAD:

• Previously unevaluated ECG evidence of possible myocardial ischemia such as substantial ischemic ST segment or T wave abnormalities
• Previously unevaluated pathologic Q waves or wall motion abnormality (evidence of prior myocardial infarction)
• Unevaluated complete left bundle branch block
• Following radiation therapy to the anterior or left chest, at 5 years post inception of radiation and every 5 years thereafter (Lancellotti 2013)

3. Incomplete or inconclusive CAD evaluation within the past 2 years, without known CAD:

• Exercise stress ECG with low risk Duke treadmill score but patient’s current symptoms indicate an intermediate or high pretest probability, which should include stress imaging
• Exercise stress ECG with intermediate Duke treadmill score
• Inconclusive/borderline CCTA (e.g. 40-70% lesions)
• An indeterminate (equivocal, borderline, or discordant) evaluation by prior stress imaging (MPI or CMR) within the past 2 years, in patients for whom a noninvasive approach is preferable to proceeding to invasive coronary arteriography (e.g. a patient presenting with unclear symptoms, ECG and imaging discordant, but with severe contrast allergy or chronic kidney disease.)

**Known Major Vessel CAD**
(Patel 2017)

• Validated concern for a previous acute coronary syndrome without subsequent invasive or noninvasive coronary evaluation

• Follow up SE at 2-year intervals is approvable, if it will affect consideration of coronary revascularization (initial or additional), in patients with one of the following:
  o History of silent ischemia with severe unrevascularized CAD and revascularization could be feasible (Deedwania 2018)
  o History of severe unrevascularized major multivessel CAD, without major wall motion abnormality, and revascularization could be feasible.

• Ischemia assessment following inconclusive findings of invasive coronary arteriography or CCTA, for the purpose of assessing extent of ischemia and need for additional medical, interventional, or surgical therapy

• Myocardial viability testing by low dose dobutamine stress echocardiography (myocardial perfusion imaging at rest is equally approvable) prior to coronary revascularization is reasonable in patients with left ventricular ejection fraction (LVEF) ≤ 50%, if it could significantly alter the
revascularization strategy. (Patel 2013; Yancy 2013).

- New or worsening symptoms of ischemia in the absence of an acute coronary syndrome, unless the most current stress imaging study would warrant invasive coronary arteriography instead (e.g. History of high risk stress test without subsequent invasive coronary arteriography might warrant invasive coronary angiography) (Patel 2012).

- De novo heart failure (HF) patients who have known CAD, even without angina, unless the patient is not eligible for revascularization of any kind, or unless invasive coronary arteriography is immediately planned (Yancy 2013).

**Special Diagnostic Conditions, Requiring Coronary Evaluation**

- Newly diagnosed systolic or diastolic HF, when invasive coronary angiography is not immediately planned, especially when symptoms or signs of ischemia are present or suspected (SE diversion not required) (Yancy 2013, Patel 2013, Fihn 2012).
- Newly found wall motion abnormality (Colucci 2018)
- Ventricular arrhythmias:
  - Sustained ventricular tachycardia (VT) >100 bpm, ventricular fibrillation (VF), or exercise induced ventricular tachycardia (VT), when invasive coronary arteriography is not the initially required test (Al-Khatib 2018, in press)
  - Nonsustained VT, multiple episodes, each ≥ 3 beats at ≥ 100 bpm, without known cause or associated cardiac pathology, when an exercise ECG has shown an intermediate risk Duke Score or an exercise ECG could not be performed (Zimetbaum 2018)
  - Frequent premature ventricular contractions (PVCs) ≥ 30/hour, or any PVC on a 12 lead ECG, without known cause or associated cardiac pathology, when an exercise ECG has shown an intermediate risk Duke Score OR an exercise ECG is not feasible due to inability to exercise or due to an uninterpretable ECG (Cha 2012, Manolis 2018)
- Prior to Class IC antiarrhythmic drug initiation in intermediate and high global risk patients (Kumar 2018)
- Assessment of hemodynamic significance of known
  - Anomalous coronary arteries (Grani 2017),
  - Muscle bridging of a coronary artery (perform with exercise stress) (Sorajja 2018), OR
  - Coronary aneurysms in Kawasaki’s disease (Newburger 2018)

**Chronic Valvular Disease**

**Evaluation with Inclusion of Doppler**

(Nishimura 2014; Doherty 2017; Baumgartner 2017; Steiner 2017)

- Low dose dobutamine SE for the evaluation of aortic stenosis and flow (contractile) reserve in symptomatic patients with severe aortic stenosis by calculated valve area, low flow (stroke volume ≤ 35mL/square M) /low gradient (mean < 40 mm Hg or Doppler <4 M/sec), and ejection fraction < 50%  (Contractile reserve is > 20% rise in stroke volume with dobutamine).
- Exercise echo Doppler evaluation for mitral stenosis when there is a discrepancy between resting Doppler and clinical signs or symptoms.
• Exercise echo Doppler evaluation for primary (also known as prolapse, degenerative, unrelated to wall motion abnormality, etc.) mitral regurgitation (MR) if there is:
  o Discrepancy between exertional symptoms and severity of MR at rest
  OR
  o Need to distinguish moderate from severe MR in the asymptomatic patient

• Evaluation of secondary MR (also known as ischemic, related to wall motion abnormality or left ventricular dilation in cardiomyopathy, etc.), with respect to establishing an ischemic etiology

Prior to Elective Noncardiac Surgery
(Fleischer 2014; Patel 2015)

• Patients who have no other indication for a non-invasive coronary evaluation, but are referred for preoperative cardiac evaluation, are eligible for SE, based upon cardiac risk ≥1%, if all 4 criteria are met:
  o Surgery is supra-inguinal vascular, intrathoracic, or intra-abdominal. AND
  o The patient has at least one of these additional cardiac complication risk factors:
    ▪ Ischemic Heart Disease
    ▪ History of stroke or trans ischemic attack (TIA)
    ▪ History of congestive heart failure (CHF) or ejection fraction ≤35%
    ▪ Insulin-requiring diabetes mellitus
    ▪ Creatinine ≥ 2.0 mg/dl AND
  o The patient has limited functional capacity (< 4 metabolic equivalents) such as one of the following:
    ▪ Cannot take care of their ADLs or ambulate
    ▪ Cannot walk 2 blocks on level ground
    ▪ Cannot climb 1 flight of stairs
    ▪ Cannot vacuum, dust, do dishes, sweep, or carry small grocery bag AND
  o There has been no non-invasive coronary testing within one year, and the result of such a test would be likely to substantially alter therapy and/or preclude proceeding with the intended surgery

• Planning for solid organ transplantation is an indication for preoperative dobutamine SE, if there has not been a conclusive stress evaluation within the past year (Lentine 2012):
  o In a patient with poor or unknown functional capacity (4 metabolic equivalents, as characterized under preoperative evaluation for noncardiac surgery section above) (Wolk 2013)

OR

  o In a patient with ≥ 3 of the following (Lentine 2012):
• Age > 60
• Smoking
• Hypertension
• Dyslipidemia
• Left ventricular hypertrophy
• > 1 year on dialysis (for renal transplant patients)
• Diabetes mellitus
• Prior cardiovascular disease

- When the above risk calculators prove inadequate, and cardiac risk could be ≥ 1%, the American College of Surgeons NSQIP Cardiac Risk Calculator can be used as a less validated alternative. It is available at http://www.surgicalriskcalculator.com/miorcardiacarrest, with an application download required.

POST CARDIAC TRANSPLANTATION
Dobutamine SE recommended, not exercise SE (Gustafsson 2016)

• During the first five years post cardiac transplantation, patients with glomerular filtration rates less than 40 mL/min/1.73 body surface area (BSA), or who otherwise should not undergo annual invasive coronary arteriography, are appropriate for annual SE.
• After the first five years post cardiac transplantation:
  - Patients considered at low risk for transplant vasculopathy (i.e., with normal invasive coronary arteriography) can have annual SE.
  - Patients with transplant coronary vasculopathy can have annual SE, if the risk of annual invasive coronary arteriography is not acceptable (i.e. high risk of contrast nephropathy).

ADDITIONAL INFORMATION
(Fihn 2012; Wolk 2013; Montalescot 2013)

I. Scenarios that support MPI over SE
   (Henzlova 2016; Askew 2018)

I. Poor Quality Echo Image
   • Obesity with body mass index (BMI) over 40 or poor acoustic imaging window

II. Inability to Exercise
   • Physical infirmities precluding a reasonable ability to exercise for at least 3 full minutes of Bruce protocol
The patient has limited functional capacity (< 4 metabolic equivalents) such as one of the following:

- Cannot take care of their activities of daily living (ADLs) or ambulate
- Cannot walk 2 blocks on level ground
- Cannot climb 1 flight of stairs
- Cannot vacuum, dust, do dishes, sweep, or carry a small grocery bag

Patients who cannot walk up a single flight of stairs at even a slow pace or perform ADLs based upon documented limitations

III. Comorbidity Related

- Prior cardiac surgery (coronary artery bypass graft or valvular), CHF with left ventricular ejection fraction ≤ 40%
- Severe chronic obstructive pulmonary disease with pulmonary function test (PFT) documentation, severe shortness of breath on minimal exertion, or requirement of home oxygen during the day
- Poorly controlled hypertension, with systolic BP > 180 or Diastolic BP > 120
- Medical instability or serious acute illness, where maximal exercise is not recommended or appropriate (e.g. acute myocarditis or pericarditis, active infective endocarditis, acute aortic dissection, etc.)
- Resting wall motion abnormalities that would make exercise SE interpretation difficult, which includes left bundle branch block
- More than moderate valvular heart disease, when coronary data, not valvular hemodynamics, are required

IV. ECG Related Uninterpretable Wall Motion

- Pacemaker or ICD
- Poorly controlled atrial fibrillation/ectopy
- Frequent ectopy, irregular rhythm
- Ventricular pre-excitation (e.g. Wolff Parkinson White)
- Complete LBBB (SE doable, but more difficult to interpret)

V. Risk Related

- High pretest probability in suspected CAD
- Intermediate or high global risk in patients requiring type IC antiarrhythmic drugs
- Patients with prior coronary revascularization
- Arrhythmia risk with exercise and provocation of arrhythmia not required for test
- LVEF ≤ 40%

II. ECG Stress Test Alone versus Stress Testing with Imaging

Prominent scenarios suitable for an ECG stress test WITHOUT imaging (i.e. exercise treadmill ECG test) are inferred from the guidelines presented above, often (but not always) requiring that the patient can exercise for at least 3 minutes of Bruce protocol with achievement of near maximal heart rate AND has an interpretable ECG for ischemia during exercise (Wolk 2013):

The (symptomatic) low or intermediate pretest probability patient who is able to exercise and has an interpretable ECG

The (asymptomatic) high global risk patient who is able to exercise and has an interpretable ECG
• The patient who is under evaluation for exercise induced arrhythmia (or long QT interval evaluation when the resting QTc is normal), and coronary artery disease is not suspected (Al-Khatib 2017)

The patient who requires an entrance stress test ECG for a cardiac rehab program or for an exercise prescription.

Duke Exercise ECG Treadmill Score calculates risk from ECG treadmill alone:
• The equation for calculating the Duke treadmill score (DTS) is: DTS = exercise time in minutes - (5 x ST deviation in mm or 0.1 mV increments) - (4 x exercise angina score), with angina score being 0 = none, 1 = non-limiting, and 2 = exercise-limiting.

• The score typically ranges from -25 to +15. These values correspond to low-risk (with a score of ≥ +5), intermediate risk (with scores ranging from - 10 to + 4), and high-risk (with a score of ≤ -11) categories.

An uninterpretable baseline ECG includes (Fihn 2012):
Abnormalities of ST segment depression of 0.1 mV (1 mm with conventional calibration) or more
Ischemic looking T wave inversions of at least 0.25 mV (2.5 mm with conventional calibration)
ECG findings of probable or definite LVH, WPW, a ventricular paced rhythm, or left bundle branch block
Digitalis use or hypokalemia
Resting HR under 50 bpm on a beta blocker and an anticipated suboptimal workload (e.g. rate-pressure product less than 20-25K) could render inconclusive result
Prior false positive stress ECG

III. Global Risk of Cardiovascular Disease

Global risk of CAD is defined as the probability of manifesting cardiovascular disease over the next 10 years and refers to asymptomatic patients without known cardiovascular disease. It should be determined using one of the risk calculators below. A high risk is considered greater than a 20% risk of a cardiovascular event over the ensuing 10 years. High global risk by itself generally lacks scientific support as an indication for stress imaging (Douglas 2018). There are rare exemptions, such as patients requiring a I-C antiarrhythmic drug, who might require coronary risk stratification prior to initiation of the drug, when global risk is moderate or high.

• CAD Risk—Low
10-year absolute coronary or cardiovascular risk less than 10%.

• CAD Risk—Moderate
10-year absolute coronary or cardiovascular risk between 10% and 20%.

• CAD Risk—High
10-year absolute coronary or cardiovascular risk of greater than 20%.

Links to Global Cardiovascular Risk Calculators*
*Patients who have already manifested cardiovascular disease are already at high global risk and are not applicable to the calculators.

(D’Agostino 2008; Ridker 2007; McClelland 2015; Goff 2014)
<table>
<thead>
<tr>
<th>Risk Calculator</th>
<th>Link to Online Calculator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds Risk Score</td>
<td><a href="http://www.reynoldsriskscore.org/">http://www.reynoldsriskscore.org/</a></td>
</tr>
<tr>
<td>Pooled Cohort Equation</td>
<td><a href="http://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx?example">http://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx?example</a></td>
</tr>
<tr>
<td>MESA Risk Calculator With addition</td>
<td><a href="https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx">https://www.mesa-nhlbi.org/MESACHDRisk/MesaRiskScore/RiskScore.aspx</a></td>
</tr>
<tr>
<td>of Coronary Artery Calcium Score,</td>
<td></td>
</tr>
<tr>
<td>for CAD-only risk</td>
<td></td>
</tr>
</tbody>
</table>

**IV. Definitions of Coronary Artery Disease**  
(Fihn 2012; Montalescot 2013; Patel 2017; Mintz 2016 Tobis 2007)

1. Percentage stenosis refers to the reduction in diameter stenosis when angiography is the method and refers to cross sectional narrowing when IVUS (intravascular ultrasound) is the method of determination.
2. Coronary artery calcification is a marker of risk, as measured by Agatston score on coronary artery calcium imaging. It is not a diagnostic tool so much as it is a risk stratification tool. Its incorporation into Global Risk can be achieved by using the MESA risk calculator.
3. Stenoses ≥ 50% are considered obstructive coronary artery disease (also referred to as clinically significant), while stenoses ≤ 50% are considered nonobstructive coronary artery disease (Gerber 2018).
4. Ischemia-producing disease (also called hemodynamically or functionally significant disease, for which revascularization might be appropriate) generally implies at least one of the following:
   i. Suggested by percentage diameter stenosis ≥ 70% by angiography; borderline lesions are 40-70% (Fihn 2012, Tobis 2007)
   ii. For a left main artery, suggested by a percentage stenosis ≥ 50% or minimum lumen cross sectional area on IVUS < 6 square mm (Fihn 2012, Mintz 2016)
   iii. FFR (fractional flow reserve) ≤ 0.80 for a major vessel (Mintz 2016)
   iv. Demonstrable ischemic findings on stress testing (ECG or stress imaging), that are at least mild in degree
5. A major vessel is a coronary vessel that would typically be substantial enough for revascularization, if indicated. Lesser forms of coronary artery disease would be labeled as “limited” and not major (i.e. A 50% lesion in a tiny septal or modest size mid PDA would be limited obstructive coronary artery disease.)
6. Microvascular ischemic coronary artery disease, as might be described by a normal FFR (fractional flow reserve) above 0.80 with a reduced CFR (coronary flow reserve less than 2.5), has not otherwise been addressed in this manuscript, because it is very rarely an issue in compliance determinations. However, it would constitute a form of ischemic heart disease.
7. FFR (fractional flow reserve) is the distal to proximal pressure ratio across a coronary lesion during maximal hyperemia induced by either intravenous or intracoronary adenosine. Less than or equal to 0.80 is considered a significant reduction in coronary flow. Newer iterations such as iFR (instantaneous wave free ratio) might supersede basic FFR technology in the near future.

8. New technology is evolving that estimates FFR from CCTA images. This is covered under the separate NIA Guideline for FFR-CT.

V. Anginal Equivalent

Development of an anginal equivalent (e.g. shortness of breath, fatigue, or weakness) either with or without prior coronary revascularization should be based upon the documentation of reasons to suspect that symptoms other than chest discomfort are not due to other organ systems (e.g. dyspnea due to lung disease, fatigue due to anemia, etc.), by presentation of clinical data such as respiratory rate, oximetry, lung exam, etc. (as well as d-dimer, chest CT(A), and/or PFTs, when appropriate), and then incorporated into the evaluation of coronary artery disease as would chest discomfort. Syncope per se is not an anginal equivalent (Moya 2009, Shen 2017, Fihn 2012).

VI. Peripheral Arterial Disease/Cerebrovascular Disease

Arterial vascular disease below the renal arteries is generally referred to as peripheral arterial disease, when the ankle brachial index is < 0.9 or there is at least 50% vessel diameter narrowing on ultrasound or angiography (Hussain 2018).

Cerebrovascular disease generally refers to a history of TIA or stroke, or cerebrovascular lesions that put the patient at considerable risk for stroke (Caplan 2018).

There is no evidence to demonstrate that screening all patients with peripheral arterial disease for asymptomatic atherosclerosis in other arterial beds improves clinical outcome. Intensive treatment of risk factors through guideline directed medical therapy is the principal method for preventing adverse cardiovascular ischemic events secondary to atherosclerotic disease in other arterial beds (Gerhard-Herman 2016).

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>antiarrhythmic drug</td>
</tr>
<tr>
<td>ADLs</td>
<td>activities of daily living</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area in square meters</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>FFR</td>
<td>fractional flow reserve</td>
</tr>
<tr>
<td>LBBB</td>
<td>left bundle-branch block</td>
</tr>
<tr>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVH</td>
<td>left ventricular hypertrophy</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>MET</td>
<td>estimated metabolic equivalent of exercise</td>
</tr>
<tr>
<td>MPI</td>
<td>myocardial perfusion imaging</td>
</tr>
<tr>
<td>PFT</td>
<td>pulmonary function test</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PVCs</td>
<td>premature ventricular contractions</td>
</tr>
<tr>
<td>SE</td>
<td>stress echocardiography</td>
</tr>
<tr>
<td>VT</td>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>VF</td>
<td>Ventricular fibrillation</td>
</tr>
<tr>
<td>WPW</td>
<td>Wolf Parkinson White</td>
</tr>
</tbody>
</table>
References


Deedwania PC. Silent myocardial ischemia: Epidemiology, diagnosis, treatment, and prognosis. UpToDate, Waltham, MA; April, 2018. Available at: https://www.uptodate.com/contents/silent-myocardial-ischemia-epidemiology-diagnosis-treatment-and-


Einstein, A. Effects of radiation exposure from cardiac imaging: how good are the data? *Journal of the American College of Cardiology*. 2012; 59(6): 553-565. Available at: [http://content.onlinejacc.org/cgi/content/short/59/6/553](http://content.onlinejacc.org/cgi/content/short/59/6/553)


Manolis AS. Ventricular premature beats. UpToDate. Waltham, MA; April, 2018, Available at: https://www.uptodate.com/contents/ventricular-premature-beats?search=pvcs&sectionRank=3&usage_type=default&anchor=H3565692&source=machineLearning&selectedTitle=1~150&display_rank=1#H3565692


Newburger JW, de Ferranti DSD, Fulton DR. Cardiovascular sequelae of Kawasaki disease: Clinical features and evaluation. UpToDate. Waltham, MA; April, 2018. Available at: https://www.uptodate.com/contents/cardiovascular-sequelae-of-kawasaki-disease-clinical-features-and-evaluation?search=Ischemia%20in%20Kawasaki&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1#H13231752
Retrieved May 24, 2018


Schinkel AFL, Bax JJ, Geleijnse ML, et al. Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography? *European Heart Journal.* 2003;24(9): 789–800. Available at: [https://doi.org/10.1016/S0195-668X(02)00634-6](https://doi.org/10.1016/S0195-668X(02)00634-6)


arteries?search=myocardial%20bridging&source=search_result&selectedTitle=1~14&usage_type=default&display_rank=1#H10

Steiner J, Rodes-Cabau J, Holmes D et al. Mechanical Intervention for Aortic Valve Stenosis in Patients With Heart Failure and Reduced Ejection Fraction. *JACC.* 2017;70(24):3026-3041. Available at: http://www.onlinejacc.org/content/70/24/3026


