MEDICALLY NECESSARY INDICATIONS FOR PROTON BEAM THERAPY (Requires Physician Review):

Treatment of the following in children less than 21 years of age:
- Primary or benign solid tumors (curative intent; occasional palliative treatment) when sparing of surrounding normal tissues cannot be achieved with photon therapy

Treatment at any age (ASTRO, 2017):
- Primary hepatocellular tumors treated with hypofractionated regimens
- Spinal tumors (primary or metastatic) where spinal cord has previously been treated with radiation or where the spinal cord tolerance may be exceeded with conventional treatment
- Tumors at the base of skull (chordoma, chondrasarcomas)
- Intraocular melanomas or other ocular tumors
- Patients with genetic syndromes making total volume of radiation minimization crucial, such as, but not limited to NF-1 patients and retinoblastoma patients
- Non-metastatic retroperitoneal sarcomas
- Re-irradiation cases (where cumulative critical structure dose would exceed tolerance dose)

OTHER TREATMENT OPTIONS REQUIRING PHYSICIAN REVIEW (ASTRO, 2017):

For peer review purposes supporting documentation from the radiation oncologist is required and should include the clinical rationale for performing proton beam rather than 3-D conformal or IMRT or SRS.

Proton beam therapy has not been proven to be superior to conventional radiation therapy for all other indications including, but not limited to:
- Prostate cancer
- Breast cancer
- Lung cancer
- Colorectal cancer
- Cervical cancer
- Metastasis
- Gliomas
- Soft tissue sarcoma
- Head and Neck
- Pelvic
- Gastric
BACKGROUND:
Proton beam therapy (PBT) is a type of external beam radiotherapy that uses charged particles. These particles have unique characteristics including limited lateral slide, scatter, and tissue in a defined range, going for maximum dose delivery over the last few millimeters of the particles’ range. The maximum is called the Bragg peak. Proton beam irradiation when applied to treating cancer, uses different proton energy with Bragg peaks at various steps, enabling dose escalation to the tumor, minimizing excess dose to normal surrounding tissue. Over the years, proton beam irradiation has been applied to treating tumors that require dose escalation to achieve a higher probability of care, as well as tumors requiring increased precision in dose deposition while protecting normal surrounding tissue. Proton therapy has an over 40-year history in treating cancer, yet to date, there have been few studies that show superiority to conventional photon beam irradiation, especially with modern techniques.

POLICY HISTORY:
Review Date: February 2019
Review Summary: Added and updated references
REFERENCES:


Flynn K. Brief overview: Reviews of proton beam therapy for cancer. Boston, MA: Veterans Health Administration Technology Assessment Program (VATAP); August 2007.


Disclaimer: Magellan Healthcare service authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Magellan Healthcare subsidiaries including, but not limited to, National Imaging Associates ("Magellan"). The policies constitute only the reimbursement and coverage guidelines of Magellan. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. Magellan reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.