This Chest CT Guideline covers CPT codes 71250 (CT chest without contrast), CT chest with contrast (71260), CT chest without and with contrast (71270) and Low dose CT scan (LDCT) for lung cancer screening (71271). When the case is listed as CT chest in BBI and the clinical scenario or request for LDCT in the office notes meets appropriate use criteria for a LDCT, the LDCT is approvable due to these overlapping CPT codes. Reprocessing of the case to a separate LDCT request is not required.

**INDICATIONS FOR CHEST CT:**

**For Annual Lung Cancer Screening:**
The use of low-dose, non-contrast spiral (helical) multi-detector CT imaging as an annual screening technique for lung cancer is considered **medically necessary ONLY** when used to screen for lung cancer for certain high-risk **asymptomatic** individuals when **ALL** of the following criteria are met:

**Group 1:**
- Individual is between 55-80 years of age; AND
- There is at least a 30 pack-year history of cigarette smoking; AND
- If the individual is a former smoker, that individual had quit smoking within the previous 15 years.

**Group 2:**
- Age ≥ 50 years old; AND
- ≥ 20 pack-year history of smoking; AND
- Additional risk factors (other than second-hand smoke)*

*Additional risk factors include: Survivors of lung cancer, lymphoma, cancers of the head and neck and bladder (smoking related cancers), first degree family members with a history of lung cancer, history of COPD or pulmonary fibrosis, radon exposure, retinoblastoma, Li Fraumeni

* National Imaging Associates, Inc. (NIA) is a subsidiary of Magellan Healthcare, Inc.
syndrome, occupational exposure to arsenic, chromium, asbestos, nickel, cadmium, beryllium, silica, diesel fumes, coal smoke and soot.

**Nodule on Initial LDCT:**
(Wood, 2018)
- If multiple nodules, the largest and type is used for decision

**Lung Nodules** (Bueno, 2018)
- Incidental pulmonary nodules detected on CT (use Fleischner Table)
  - Age ≥ 35 years old – use Fleischner table
  - Excludes lung cancer screening, patients with history of primary cancer, or immunosuppression (see specific section in current guideline)
- **Incidental pulmonary nodules on non-chest CT:**
  - Nodules >8mm or those with very suspicious features need further Chest CT as early as possible
  - Nodules ≤ 8mm should follow the Fleischner table
**Table 1: 2017 Fleischner Society Guidelines for Management of Incidentally Detected Pulmonary Nodules**

### A: Solid Nodules*

<table>
<thead>
<tr>
<th>Nodule Type</th>
<th>Nodules &lt;6 mm (&lt;100 mm³)</th>
<th>Nodules 6–8 mm (100–250 mm³)</th>
<th>Nodules &gt;8 mm (&gt;250 mm³)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk</td>
<td>No routine follow-up</td>
<td>CT at 6–12 mo, then consider CT at 18–24 mo</td>
<td>Consider CT at 3 mo, PET/CT, or tissue sampling</td>
<td>Nodules &lt;6 mm do not require routine follow-up in low-risk patients (recommendation 1A)</td>
</tr>
<tr>
<td>High risk</td>
<td>Optional CT at 12 mo</td>
<td>CT at 6–12 mo, then at 18–24 mo</td>
<td>Consider CT at 3 mo, PET/CT, or tissue sampling</td>
<td>Certain patients at high risk with suspicious nodule morphology, upper lobe location, or both may warrant 12-mo follow-up (recommendation 1A)</td>
</tr>
<tr>
<td><strong>Multiple</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk</td>
<td>No routine follow-up</td>
<td>CT at 3–6 mo, then consider CT at 18–24 mo</td>
<td>CT at 3–6 mo, then consider CT at 18–24 mo</td>
<td>Use most suspicious nodule as guide to management; follow-up intervals may vary according to size and risk (recommendation 2A)</td>
</tr>
<tr>
<td>High risk</td>
<td>Optional CT at 12 mo</td>
<td>CT at 3–6 mo, then at 18–24 mo</td>
<td>CT at 3–6 mo, then at 18–24 mo</td>
<td>Use most suspicious nodule as guide to management; follow-up intervals may vary according to size and risk (recommendation 2A)</td>
</tr>
</tbody>
</table>

### B: Subsolid Nodules*

<table>
<thead>
<tr>
<th>Nodule Type</th>
<th>Nodules &lt;6 mm (&lt;100 mm³)</th>
<th>Nodules ≥6 mm (≥100 mm³)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground glass</td>
<td>No routine follow-up</td>
<td>CT at 6–12 mo to confirm persistence, then CT every 2 y until 5 y</td>
<td>For certain suspicious nodules &lt;6 mm, consider follow-up at 2 y and 4 y; if solid component(s) develops or growth occurs, consider resection (recommendations 3A and 4A)</td>
</tr>
<tr>
<td>Partly solid</td>
<td>No routine follow-up</td>
<td>CT at 3–6 mo to confirm persistence; if lesion is unchanged and solid component remains &lt;6 mm, annual CT should be performed for 5 y</td>
<td>In practice, partly solid nodules cannot be defined as such until they are ≥6 mm, and nodules &lt;6 mm usually do not require follow-up; persistent partly solid nodules with a solid component ≥6 mm should be considered highly suspicious (recommendations 4A–4C)</td>
</tr>
<tr>
<td><strong>Multiple</strong></td>
<td>CT at 3–6 mo; if lesion is stable, consider CT at 2 y and 4 y</td>
<td>CT at 3–6 mo; subsequent management based on the most suspicious nodule(s)</td>
<td>Multiple &lt;6-mm pure GGNs’ usually are benign, but consider follow-up at 2 y and 4 y in select patients at high risk (recommendation 5A)</td>
</tr>
</tbody>
</table>

**Known Cancer:**
(Carter, 2018; Hong, 2014; Lee, 2014)
- For follow-up intervals for malignancies (NCCN, 2019)
- Cancer staging (includes unknown primary)
- Cancer restaging
- Suspicious signs or symptoms of recurrence
- Suspected cancer based on prior imaging (Greco, 2012)

**Lung or Chest Wall Mass** (Mullan, 2011):
(Preference should be given to MRI over chest CT for chest wall mass)

- Mass or lesion, including lymphadenopathy, after non-diagnostic initial imaging
- Thymoma screening in Myasthenia Gravis patients (Kumar, 2015)

**Interstitial Lung Disease:**
(ACR, 2019; Vij, 2013)

- Suspected or known based on restrictive pattern pulmonary function test or signs or symptoms after initial chest x-ray
- Signs or symptoms unresponsive to treatment such as:
  - Shortness of breath
  - Persistent dyspnea
  - Persistent cough
- Monitoring treatment response of known interstitial lung disease
- Patients with known collagen vascular disease (Antoniou, 2009)
- Guidance in selection of the most appropriate site for biopsy of diffuse lung disease (ACR, 2015)

**Chronic Cough (> 8 weeks) and chest x-ray completed** (Turner, 2016):

- After evaluation for other causes and failed treatment for those diagnosed with:
  - Asthma
  - Gastroesophageal Reflux Disease
  - Discontinuation of ACE inhibitors
  - Post nasal drip
- Clinical concern for bronchiectasis

**Tuberculosis (TB):**
(Ko, 2018)

- Known or suspected tuberculosis and initial chest x-ray done

**Infection Follow-up Imaging:**

- Abscess, empyema, or pleural effusions on chest x-ray (Dean, 2016)
- For evaluation of non-resolving pneumonia or inflammatory disease documented by at least two imaging studies:
  - Unimproved with 4 weeks of antibiotic treatment; OR
  - Unresolved at 8 weeks (Bryl, 2018; Little, 2014)

**Pneumothorax on Chest X-ray** (Melamed, 2017)

**Vocal Cord Paralysis on Endoscopic Exam** (Paquette, 2012)

- Neck and Chest CT is an approvable combo

**Granulomatosis with Polyangiitis (Wegener’s Granulomatosis)** (Li, 2018)
Vascular Disease:
- CT chest is not preferred study for vascular disease, CTA should be considered. See Chest CTA guideline.
- Chest CT can be used to detect and follow-up thoracic aortic aneurysms. See Background section.

Suspected Pulmonary Embolism (PE):
- Chest CT not approvable for PE

Congenital Malformations
- Thoracic malformation on chest x-ray (Ferreira, 2015)
- Congenital Heart Disease with pulmonary hypertension (Pascall, 2018)

Hemoptysis after x-ray completed (ACR, 2019; Ketai, 2014)

Pre-operative evaluation

Post-operative/procedural evaluation:
- Post-surgical follow up when records document medical reason requiring additional imaging
- Pre-operative evaluation for Electromagnetic Navigation Bronchoscopy (Khan, 2016)

Chest Wall Pain (after initial evaluation with chest x-ray and/or rib films) (Winzenberg, 2015)
- History of known or suspected cancer
- Signs and symptoms of infection, such as:
  - Accompanying fever
  - Elevated inflammatory markers
  - Known infection at other sites

Combination of studies with Chest CT:
- Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.
- Neck and Chest CT - Neck and Chest CT is an approvable combo with vocal cord paralysis and concern for recurrent laryngeal nerve lesion

BACKGROUND:
Computed tomography (CT) scans provide greater clarity than regular x-rays and are used to further examine abnormalities found on chest x-rays. They may be used for detection and evaluation of various disease and conditions in the chest, e.g., tumor, inflammatory disease, vascular disease, congenital abnormalities, trauma, and symptoms such as hemoptysis.

OVERVIEW:
**LDCT for Lung Cancer Screening** - Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery

**CT and Aneurysm**
  - Echocardiogram shows aneurysm
  - Echocardiogram inconclusive of proximal aorta and first degree relative with thoracic aneurysm
  - Chest x-ray shows possible aneurysm
- Follow-up after established Thoracic Aneurysm (above these sizes surgery is usually recommended) (Erbel, 2014; Hannuksela 2015; Hiratzka, 2010)
  - Aortic Root or Ascending Aorta
    - 3.5 to 4.5 Annual
    - 4.5 to 5.4 Every 6 months
  - Genetically mediated (Marfans syndrome, Aortic Root or Ascending Aorta
    - 3.5 to 4.0 Annual
    - 4.0 to 5.0 Every 6 months
  - Descending Aorta
    - 4.0 to 5.0 Annual
    - 5.0 to 6.0 Every 6 months

**CT and Interstitial Lung Disease** (ACR, 2019) - Radiography of the chest is usually appropriate for the initial imaging of patients who undergo screening and surveillance for lung disease when occupational exposure is present

**Costochondritis** (Proulx, 2009) - If physical exam findings are suggestive of costochondritis but the pain is persistent despite conservative care, it should be kept in mind that costochondritis can be recurrent and persistent. It is associated with fibromyalgia. Chest CT should be considered if the findings are not consistent with typical costochondritis such as fever or elevated inflammatory markers suggestive of infection or a suspicion of cancer based on history or current findings.

**CT for Management of Hemoptysis** – High-resolution CT (HRCT) is useful for estimating the severity of hemoptysis, localizing the bleeding site and determining the cause of the bleeding. Its results can be related to the severity of bleeding. The volume of expectorated blood and the amount of blood that may be retained within the lungs without being coughed up are important. HRCT is a way to evaluate the amount of bleeding and its severity. It may also help in the localization of bleeding sites and help in detecting the cause of bleeding.

**CT and Solitary Pulmonary Nodules** – Solitary Pulmonary nodules are abnormalities that are solid, semisolid and non-solid; another term to describe a nodule is focal opacity. CT makes it possible to find smaller nodules and contrast-enhanced CT is used to differentiate benign from malignant pulmonary modules. When a nodule is increasing in size or has spiculated margins or
mixed solid and ground-glass attenuation, malignancy should be expected. Patients who have pulmonary nodules and who are immunocompromised may be subject to inflammatory processes.

**CT and Empyema** – Contrast-enhanced CT used in the evaluation of the chest wall may detect pleural effusion and differentiate a peripheral pulmonary abscess from a thoracic empyema. CT may also detect pleural space infections and help in the diagnosis and staging of thoracic empyema.

**CT and Rib fractures** (ACR, 2018) - CT Chest CT may be useful for characterizing a pathologic fracture, and some features may be helpful in differentiating a primary malignant tumor of bone from metastasis. CT may also be helpful to search for a primary malignancy in patients with a suspected pathologic fracture; however, there is no strong indication that CT serves a significant use as the initial imaging modality to detect pathologic rib fractures.

**CT and Occupational Lung Disease** (ACR, 2019) - The chest radiograph and CT are complementary in the initial workup of suspected occupational lung disease. When patients with occupational exposures present with respiratory symptoms, chest radiography serves as the primary function of excluding alternative diagnoses, such as infectious pneumonia or pulmonary edema, with HRCT findings offering the best characterization of lung disease.

**CT and Tuberculosis** - “The chest radiograph is usually the first study performed in patients suspected of having TB. Although frontal and lateral radiographs are often performed in this setting, it has been shown that the lateral radiograph does not improve the detection of findings related to TB. In those with signs or symptoms of disease, the radiographic pattern of upper-lobe or superior-segment lower-lobe fibrocavitary disease in the appropriate clinical setting is sufficient to warrant respiratory isolation and sputum culture for definitive diagnosis. Using radiographs in combination with clinical evaluation results in a high sensitivity for the diagnosis but a relatively low specificity for both latent and active TB. In addition, radiographs may reveal ancillary findings of TB such as pleural effusion or spondylitis. For immunocompromised hosts, particularly those with a low CD4 count, computed tomography (CT) should be considered.” CT may be of value in the severely immunocompromised patient with a normal or near-normal radiograph by revealing abnormal lymph nodes or subtle parenchymal disease. Finally, CT may also have a role in identifying patients with latent TB who will be at risk for reactivation disease.

**CT and Superior Vena Cava (SVC) Syndrome** – SVC is associated with cancer, e.g., lung, breast and mediastinal neoplasms. These malignant diseases cause invasion of the venous intima or an extrinsic mass effect. Adenocarcinoma of the lung is the most common cause of SVC. SVC is a clinical diagnosis with typical symptoms of shortness of breath along with facial and upper extremity edema. Computed tomography (CT), often the most readily available technology, may be used as confirmation and may provide information including possible causes.
CT and Family History of Lung Cancer (Loverdos, 2019) - Family history is equally important. Individuals with a family history of lung cancer among first-degree relatives have been consistently shown to have a two-fold higher risk of developing lung cancer themselves. Those with multiple affected family members diagnosed at younger age appear to be at greater risk.

POLICY HISTORY:
Review Date: May 2019
Review Summary:
• Added chart for f/u interval at which LDCT can be approved
• Removed pulmonary embolism indication
• Added statement about CPT codes
• Separate diagnostic criteria for Thoracic aneurysm
• Separated individual diagnoses.
• Expanded criteria for chronic cough.
• Updated references.

Review Date: May 2020
Review Summary:
• For Annual Lung Cancer Screening:
  o Changed upper age limit from 77 to 80 yrs old
  o Added:
    • Age ≥ 50 years old; AND
    • ≥ 20 pack-year history of smoking; AND
    • Additional risk factors (other than second-hand smoke)* (see pg 2)

*Additional risk factors include: Survivors of lung cancer, lymphoma, cancers of the head and neck and bladder (smoking related cancers), first degree family members with a history of lung cancer, history of COPD or pulmonary fibrosis, radon exposure, retinoblastoma, Li Fraumeni syndrome, occupational exposure to arsenic, chromium, asbestos, nickel, cadmium, beryllium, silica, diesel fumes, coal smoke and soot

• Expanded lung nodules section to include:
  o Incidental pulmonary nodules detected on CT (use Fleischner Table)
    • Age ≥ 35 years old – use Fleischner table
    • Excludes lung cancer screening, patients with history of primary cancer, or immunosuppression (see specific section in current guideline)
  o Incidental pulmonary nodules on non-chest CT:
    • Nodules >8mm or those with very suspicious features need further Chest CT as early as possible
    • Nodules ≤ 8mm should follow the Fleischner table
• For Known Cancer, added: For follow-up intervals for malignancies
• For Lung or Chest Wall Mass:
• Added statement: *Preference should be given to MRI over chest CT for chest wall mass*
  - Removed descriptive variables for ‘Mass with increased risk for malignancy’ including: *Fixation to adjacent tissues; Firm consistency; Size > 1.5 cm; Ulceration of overlying skin*
• Expanded Interstitial Lung Disease section to include:
  o *Suspected or known based on restrictive pattern pulmonary function test or signs or symptoms after initial chest x-ray*
  o *Signs or symptoms unresponsive to treatment such as:*
    ▪ *Shortness of breath*
    ▪ *Persistent dyspnea*
    ▪ *Persistent cough*
  o *Patients with known collagen vascular disease*
  o *Guidance in selection of the most appropriate site for biopsy of diffuse lung disease*
• Infection f/u imaging: added *inflammatory disease*
• Vocal Cord Paralysis on Endoscopic Exam: added ‘*Neck and Chest CT is an approvable combo*’
• Removed Vascular Disease section and added the following:
  o *CT chest is not preferred study for vascular disease, CTA should be considered. See Chest CTA guideline.*
  o *Chest CT can be used to detect and follow-up thoracic aortic aneurysms.*
• Added indication: Chest Wall Pain
  o *Chest Wall Pain (after initial evaluation with chest x-ray and/or rib films)*
    ▪ *History of known or suspected cancer*
    ▪ *Signs and symptoms of infection, such as:*
      ▪ *Accompanying fever*
      ▪ *Elevated inflammatory markers*
      ▪ *Known infection at other sites*
• Added Neck and Chest CT combo study

Review Date: November 9, 2020
Review Summary: Replaced CPT code G0297 with 71271
REFERENCES:


Bryl B, Barlow E, Davies H. P182 Follow up chest X-rays (CXR) after community acquired pneumonia (CAP): Are they done and are they useful? BMJ. 2018; 73(4).


Turner RD, Bothamley GH. Chronic cough and a normal chest X-ray - a simple systematic approach to exclude common causes before referral to secondary care: a retrospective cohort study. NPJ Prim Care Respir Med. 2016; 26:15081.


Disclaimer: Magellan Healthcare service authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Magellan Healthcare subsidiaries including, but not limited to, National Imaging Associates (“Magellan”). The policies constitute only the reimbursement and coverage guidelines of Magellan. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. Magellan reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.