

EVOLENT CLINICAL GUIDELINE 7001 FOR PROTON BEAM RADIATION THERAPY AND NEUTRON BEAM RADIATION THERAPY SERVICES

Guideline or Policy Number:

Evolent_CG_7001

"Evolent" refers to Evolent Health LLC and Evolent Specialty Services, Inc.
© 2025 Evolent. All rights Reserved.

Original Date:

January 2025

August 2024

August 2024

Applicable Codes

Implementation Date:

January 2025

TABLE OF CONTENTS

STATEMENT	3
GENERAL INFORMATION	3
Purpose	3
Proton Beam Therapy	
Neutron Beam Therapy	4
EVIDENCE BASED MEDICINE (EBM)	
Special Note	
PRINCIPLES OF EBM APPLIED TO ALL TREATMENT MODALITIES (INCLUDING PROTON & NEUTRON BEAM RADIATION THERAPY)	i.
Definition	5
EVIDENCE REQUIREMENTS FOR HIGHLY PREVALENT TYPES OF CANCERS	
Definition	
EVIDENCE REQUIREMENTS FOR LESS PREVALENT TYPES OF CANCER	
Definition	
Less Prevalent Cancer TypesINDICATIONS FOR PROTON BEAM RADIATION THERAPY (PBRT)	
` ,	
PBRT Indications for Specific Cancer Types	
PBRT Indications for Pediatric Cancers	
Definitions	
INDICATIONS FOR NEUTRON BEAM RADIATION THERAPY (NBRT)	
NBRT Indications	
EXCLUSIONS FOR PBRT & NBRT	
LEGISLATIVE REQUIREMENTS	
STATE OF ILLINOIS	c
HB 2799	

STATE OF OKLAHOMA	
HB 1515	10
STATE OF OREGON	10
ORS 743A.130	
COMMONWEALTH OF VIRGINIA	
Section §38.2-3407.14:1 of the Code of Virginia	
STATE OF WASHINGTON	
HTCC Coverage Determination 20190517A	
CODING AND STANDARDS	
Coding	12
CPT Codes	12
APPLICABLE LINES OF BUSINESS	12
Policy History	
Summary	
LEGAL AND COMPLIANCE	
GUIDELINE APPROVAL	
Committee	
DISCLAIMER	
REFERENCES	14

STATEMENT

General Information

It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. If applicable: All prior relevant imaging results and the reason that alternative imaging cannot be performed must be included in the documentation submitted.

Where a specific clinical indication is not directly addressed in this guideline, medical necessity determination will be made based on widely accepted standard of care criteria. These criteria are supported by evidence-based or peer-reviewed sources such as medical literature, societal guidelines and state/national recommendations.

Purpose

Proton Beam Therapy

Proton beam therapy (PBRT) is a type of highly precise external beam radiotherapy that uses charged particles (i.e., protons) to treat various cancers. Protons are unique since they only travel a certain distance into the body before they stop and deliver their highest dose of radiation at the end of the beam's pathway. This targeted burst of energy, which gives PBRT its high degree of precision, is called the Bragg peak.

Over the years, PBRT has been used to treat cancers with the goal of improving patient outcomes such as improved overall survival, decreased rates of long-term (chronic) toxicity, and decreased rates of second cancers due to radiotherapy treatments. Although PBRT has been in use for many years, there have been only a limited number clinicals trials that provide adequate evidence that PBRT is superior to other types of standard state-of-the-art radiation treatment modalities in terms of clinically significant results.

Much of the PBRT research has involved the comparison of the radiation doses delivered to organs at risk with PBRT versus the doses delivered with Intensity Modulated Radiation Therapy (IMRT).

Dosimetric advantages with PBRT do not always translate into clinical benefits. ⁽¹⁾ This may be due to the greater uncertainty in the delivered biologically effective dose distributions with PBRT due to such factors as:

- Inter-fractional and intra-fractional organ motion, which is particularly difficult to account for with protons
- Setup variability
- Approximations made in dose computations methods due to the entrance dose and neutron dose in the tissues around the target which can be higher than they are for photons with uncertainties in the range in complex tissues (especially around metallic implants) and the lateral penumbra

- The assumption of a constant RBE of 1.1 <u>AND</u>
- The deposition of a higher linear energy transfer beyond the target
- Even though more than 170,000 patients have been treated with PBRT to date, the clinical evidence for protons so far has not been unequivocally clear and broad enough to alleviate concerns
- Current research involving PBRT is ongoing. Multiple multicenter phase 3 randomized controlled trials (RCTs) are currently in progress

Neutron Beam Therapy

Neutron beam radiation therapy (NBRT) is a specialized type of external beam radiotherapy that uses high-energy neutrons (neutral subatomic particles). The neutrons are targeted toward tissue masses that are characterized by lower tumor oxygen levels and a slower cell cycle, since neutrons require less oxygen and are less dependent on the cell's position in the cell division cycle. Neutrons produce 20 to 100 times more energy than conventional photon radiation and may be more damaging to surrounding tissues.

NBRT has been employed mainly in the treatment of the salivary gland cancers. Nevertheless, NBRT has not gained wide acceptance because of the practical difficulty in generating neutron particles for use in a cancer center and also due to limited amount of evidence published in peer reviewed medical journals. (2,3)

Evidence Based Medicine (EBM)

EBM and Evolent Guidelines

Evidence-based medicine (EBM) uses the scientific method to organize and apply current medical data to determine which treatments are medically necessary.

The ASTRO Model Policy for Proton Beam Therapy also states that "there is a need for continued clinical evidence development and comparative effectiveness analyses for the appropriate use of PBT for various disease sites." (4)

Evolent is committed to creating guidelines that follow an EBM approach. Evolent Radiation Oncology guidelines apply the **same standard** of clinical evidence for medical policy benefit coverage decisions. This guideline will be updated periodically. New and significant medical evidence will be included in these updates.

This guideline provides coverage for Proton Beam and Neutron Beam Radiation Treatment (PBRT) for different types of cancer based on medical necessity criteria and does not apply a higher standard of clinical evidence for the coverage of proton beam therapy than for any other form of radiation therapy treatment.

Special Note

See <u>Legislative Requirements</u> for specific mandates for Illinois, Oklahoma, Oregon, Virginia, and Washington.

PRINCIPLES OF EBM APPLIED TO ALL TREATMENT MODALITIES (INCLUDING PROTON & NEUTRON BEAM RADIATION THERAPY)

Definition

Prevalence of a type of cancer is defined as the number of cases of that type of cancer, both new and existing, in the population in a given period of time.

It is necessary for all unproven and potentially harmful types of radiation treatment to be validated for use through data generated from clinical research and medical evidence. Due to different degrees of prevalence (i.e., high vs low) for each type of cancer, different levels of medical evidence will be available and required to prove the efficacy of a given radiation treatment for a given type of cancer. This applies equally to ALL radiation treatments including - brachytherapy, intraoperative radiation therapy, photon, electron, neutron, and proton beam radiation treatments.

Evidence Requirements for Highly Prevalent Types of Cancers

Definition

Highly Prevalent Types of Cancer include cancers with ≥60,000 cases per year in the USA - including Breast, Prostate, Lung, Melanoma of the Skin, Colon, Adult Lymphoma, Bladder, Kidney, Head and Neck, Uterus, and Pancreatic cancers.

Since **Highly Prevalent Types of Cancer** occur frequently in the population, historically it has been feasible and beneficial to enroll these cancer patients in clinical research trials that produce the highest degree of medical evidence. The type of clinical research trials that produce the highest degree of medical evidence are Phase 3 randomized controlled trials (RCTs).

Due to the relative abundance of **Highly Prevalent Types of Cancer**, the validation of a specific treatment modality requires that <u>a significant</u>, <u>superior</u>, <u>and clinically meaningful benefit be demonstrated in a phase 3 RCT using that specific treatment modality</u>. Historical examples of new radiation treatment modalities and technologies include:

- LDR Brachytherapy
- HDR Brachytherapy

Page 5 of 18

- Electronic Brachytherapy
- Gamma beam Cobalt-60 LINAC technology
- Photon beam treatments with 2D/3D LINAC technology
- Photon beam treatment with IMRT LINAC technology
- Intraoperative LINAC technology
- Neutron beam LINAC technology
- Proton beam with 3D/IMPT/Flash LINAC technology

Evidence based validation has historically been required prior to the full acceptance and approval of previously unproven and potentially harmful types of radiation treatment.

As in the case of other radiation treatment modalities, in order for Proton/Neutron beam treatment to be validated for use with a **Highly Prevalent Type of Cancer**, it must first demonstrate a significant, superior, and clinically meaningful benefit when compared to a standard type of radiation treatment in a published Phase 3 RCT for a specific type of cancer.

Evidence Requirements for Less Prevalent Types of Cancer

Definition

Less Prevalent Type of Cancer includes all other cancers with <60,000 cases per year in the USA. The medical evidence required to support the acceptance of PBRT for **Less Prevalent Types of Cancer** will be described below. ⁽⁵⁾

Less Prevalent Cancer Types

Due to their low numbers in the population, enrollment of **Less Prevalent Types of Cancers** in Phase 3 RCTs is extremely difficult and may be impossible.

Indications for PBRT in **Less Prevalent Types of Cancers** may include cancers that are supported by clinical research under the following conditions:

- PBRT trials cited in peer-reviewed medical literature that appear in scientific, medical, and publications in which original manuscripts are published, only after having been critically reviewed for scientific accuracy, validity, and reliability by unbiased, independent experts prior to publication. In-house publications of entities whose business relates to the manufacture, sale, or distribution of proton beam treatment equipment are excluded from consideration.
- In determining whether approval of PBRT is supported for Less Prevalent Types of Cancers, the evidence in published, peer-reviewed medical literature listed below will be reviewed. The following will be considered:

Page 6 of 18

- Whether the clinical characteristics of the beneficiary and the cancer are adequately represented in the published evidence.
- Whether the administered PBRT regimen is adequately represented in the published evidence.
- Whether the reported study outcomes demonstrate a significant, superior, and clinically meaningful benefit for the patients receiving PBRT. A significant, clinically meaningful benefit consists of:
 - A survival benefit <u>OR</u> A benefit in decreased chronic/long term toxicity (not a decrease in acute toxicity) <u>AND</u>
 - A significance value of p < 0.05
- In determining whether approval of PBRT is supported for Less Prevalent Types of Cancers, the following will also be considered:
 - o whether the experimental design, in light of the PBRT treatment and conditions under investigation, is appropriate to address the investigative question. (For example, in some clinical studies, it may be unnecessary or not feasible to use randomization, double blind trials, placebos, or crossover).
 - o That non-randomized clinical trials with a significant number of subjects may be a basis for supportive clinical evidence for determining accepted uses of PBRT.

INDICATIONS FOR PROTON BEAM RADIATION THERAPY (PBRT)

PBRT Indications for Specific Cancer Types

Based on the medical evidence criteria described above, the following adult cancer types are indicated for treatment with PBRT:

- Liver (Hepatocellular Carcinoma) and intrahepatic bile duct cancers (6,7,8,9,10,11,12,13,14)
- Paranasal Sinus, Nasopharynx, Maxillary Sinus, Ethmoid Sinus, Cavernous Sinus cancers (15,16,17,18,19)
- Oropharynx Cancer (stage III/IV) (20)
- Chordomas and Chondrosarcomas Spine and Base of Skull (21,22,23,24,25,26)
- Meningioma (27,28)
- Arteriovenous Malformations (AVM) (29,30)
- Acoustic Neuroma (31,32,33,34)
- Pituitary Adenoma (35,36,37,38,39)
- Intraocular (Uveal) Melanoma (40,41,42,43,44)

 Other brain or spinal tumors that are adjacent critical structures such as an optic nerve, optic chiasm, brain stem, or spinal cord <u>AND</u> cannot be sufficiently spared using IMRT or SRS treatment.

PBRT Indications for Pediatric Cancers

PBRT will be approved for <u>ALL</u> pediatric patients (≤18 years old). (45,46) Patients >18 years old with cancers displaying the same histology as common pediatric cancers, will be evaluated and may be approved for PBRT as an adolescent or young adult (AYA) on a case-by-case basis. (47)

Pediatric cancer patients, who require PBRT, should be treated by Radiation Oncologists with access to clinical research trials who have considerable clinical experience treating pediatric patients.

Consider multidisciplinary consultation, which includes a radiation oncologist for the optimal method to reduce radiation-induced late effects.

Radiation Oncologists who specialize in this patient population will have the discretion to choose the appropriate number of fractions and dose that are needed to treat these patients.

PBRT Indications for Cases of Re-Irradiation

Definitions

Re-irradiation is defined as the use of additional radiation treatment to treat an area of the body that has already received prior radiation to that same area.

The term "re-irradiation" does <u>NOT</u> apply to situations where a patient has received radiation treatment to one area of the body (i.e. the lung) and now requires radiation to a completely separate area of the body (i.e. the brain).

PBRT will be approved for ALL patients who have received any previous radiation to an anatomic location and who now require an additional course of radiation to that same anatomic area.

The radiation dose and the number of fractionations prescribed for each patient receiving reirradiation will be different and based on that patient's prior treatment history. The dose and the number of fractionations will be left to the discretion on the treating physician and when possible, based on peer reviewed literature. (49,50,51,52,53,54,55,56)

INDICATIONS FOR NEUTRON BEAM RADIATION THERAPY (NBRT)

NBRT Indications

 Neutron beam therapy is considered medically necessary for salivary gland cancers that are unresectable or for patients with recurrent salivary cancers. (2,57,58,59,60,61,62)

Exclusions for PBRT & NBRT

The following scenarios are excluded from coverage with PBRT & NBRT:

- Where the medical evidence for PBRT for a particular type of cancer is an Abstract, Meeting Abstract, or is a published Case Study (since these published sources only contain anecdotal information or incomplete study details).
- Where there is insufficient medical evidence to deem PBRT medically necessary for a specific type of cancer even though the patient is enrolled in a clinical trial for PBRT (Enrollment in a clinical trial is <u>NOT</u> considered a valid criterion for coverage for PBRT. Nonetheless, a patient may appeal for PBRT coverage to the Health Plan).
- Where there is insufficient medical evidence to deem PBRT medically necessary and the only published studies are "physics" or "dosimetry" studies. These studies make theoretical predictions and are not considered adequate medical evidence.
- Treatment of other tumors with NBRT that are not mentioned in the Indications for NBRT section.

LEGISLATIVE REQUIREMENTS

State of Illinois (63)

HB 2799

HB2799 Enrolled

Section 5. The Illinois Insurance Code is amended by adding Section 356z.61 as follows: (215 ILCS 5/356z.61 new)

- (b) A group or individual policy of accident and health insurance or managed care plan that is amended, delivered, issued, or renewed on or after January 1, 2025 that provides coverage for the treatment of cancer shall not apply a higher standard of clinical evidence for the coverage of proton beam therapy than the insurer applies for the coverage of any other form of radiation therapy treatment.
- (c) A group or individual policy of accident and health insurance or managed care plan that is amended, delivered, issued, or renewed on or after January 1, 2025 that provides coverage

Page 9 of 18

or benefits to any resident of this State for radiation oncology shall include coverage or benefits for medically necessary proton beam therapy for the treatment of cancer. Section 99. Effective date. This Act takes effect January 1, 2024.

State of Oklahoma (64)

HB 1515

ENROLLED HOUSE BILL NO. 1515

SECTION 1. NEW LAW A new section of law to be codified in the Oklahoma Statutes as Section 6060.9b of Title 36, unless there is created a duplication in numbering, reads as follows:

A. A health benefit plan, as defined in subsection C of Section 6060.4 of Title 36 of the Oklahoma Statutes, that provides coverage for cancer therapy shall be prohibited from holding proton radiation therapy to a higher standard of clinical evidence for medical policy benefit coverage decisions than the health plan requires for coverage of any other radiation therapy treatment.

B. Nothing in this section shall be construed to mandate the coverage of proton radiation therapy by a health benefit plan.

SECTION 2. This act shall become effective November 1, 2015.

State of Oregon (65)

ORS 743A.130

ORS 743A.130 Proton beam therapy

- (1) A health benefit plan, as defined in ORS 7438.005 (Definitions), that provides coverage of radiation therapy for the treatment of prostate cancer must provide coverage for proton beam therapy for the treatment of prostate cancer on a basis no less favorable than the coverage of radiation therapy.
- (2) The coverage of proton beam therapy under subsection (1) of this section may be subject to prior authorization, as defined in ORS 7438.001 (Definitions), or other utilization review, as defined in ORS 7438.001 (Definitions), if the prior authorization or utilization review applied to proton beam therapy is no more restrictive than the prior authorization or utilization review applied to radiation therapy.
- (3) This section is exempt from ORS 743A.001 (Automatic repeal of certain statutes on individual and group health insurance). [2019 c.466 §2; 2021 c.384 §1]

Note: 743A.130 (Proton beam therapy) was added to and made a part of the Insurance Code by legislative action but was not added to ORS chapter 743A or any series therein.

See Preface to Oregon Revised Statutes for further explanation.

Page 10 of 18

Commonwealth of Virginia (66)

Section §38.2-3407.14:1 of the Code of Virginia

Be it enacted by the General Assembly of Virginia:

- 1. That §38.2-3407.14:1 of the Code of Virginia is amended and reenacted as follows: §38.2-3407.14: 1. Standard of clinical evidence for decisions on coverage for proton radiation therapy.
- B. Notwithstanding the provisions of §38.2-3419, each policy, contract, or plan issued or provided by a carrier that provides coverage for cancer therapy shall not hold proton radiation therapy to a higher standard of clinical evidence for decisions regarding coverage under the policy, contract, or plan than is applied for decisions regarding coverage of other types of radiation therapy treatment, and each carrier may consider at least one of the following a sufficient standard of clinical evidence to justify coverage of proton radiation therapy:
- 1. That a proton radiation therapy treatment is covered by Medicare, Medicaid, or any other governmental health care coverage for any type of cancer.
- 2. That a patient's treating physician or radiation oncologist recommends proton radiation therapy for such patient's cancer treatment.
- C. Nothing in this section shall be construed to mandate the coverage of proton radiation therapy under any policy, contract, or plan issued or provided by a carrier.
- D. The requirements of this section shall apply to all insurance policies, subscription contracts, and health care plans delivered, issued for delivery, reissued, or extended in the Commonwealth on and after January 1, 2018, or at any time thereafter when any term of the policy, contract, or plan is changed or any premium adjustment is made.
- E. This section shall not apply to policies or contracts designed for issuance to persons eligible for coverage under Title XVIII of the Social Security Act, known as Medicare, or any other similar coverage under state or federal governmental plans.
- 2. That the requirements of this act shall apply to all insurance policies, subscription contracts, and health care plans delivered, issued for delivery, reissued, or extended in the Commonwealth on and after January 1, 2025, or at any time thereafter when any term of the policy, contract, or plan is changed or any premium adjustment is made.

State of Washington (67)

HTCC Coverage Determination 20190517A

Number and coverage topic:

20190517A - Proton beam therapy - re-review

HTCC coverage determination:

Proton beam therapy is a covered benefit for children/adolescents less than 21 years old.

Page 11 of 18

Proton beam therapy is a covered benefit with conditions for individuals 21 years old and older, consistent with the criteria identified in the reimbursement determination.

HTCC reimbursement determination:

Limitations of coverage:

For individuals 21 years old and older proton beam therapy is a covered benefit with conditions for the following primary cancers:

- Esophageal
- Head/neck
- Skull-based
- Hepatocellular carcinoma
- Brain/ spinal
- Ocular
- Other primary cancers where all other treatment options are contraindicated after review by a multidisciplinary tumor board.

Non-covered indicators:

Proton beam therapy is not covered for all other conditions.

CODING AND STANDARDS

Coding

CPT Codes

32701, 61796, 61797, 61798, 61799, 61800, 63620, 63621, 77014, 77261, 77262, 77263, 77280, 77285, 77290, 77293, 77295, 77299, 77300, 77301, 77321, 77331, 77332, 77334, 77336, 77338, 77370, 77372, 77373, 77387, 77399, 77423, 77427, 77432, 77435, 77470, 77499, 77520, 77522, 77523, 77525, G0339, G0340, G6001, G6002, G6017

Applicable Lines of Business

CHIP (Children's Health Insurance Program)
Commercial
Exchange/Marketplace
Medicaid
Medicare Advantage

Policy History

Summary

Date	Summary
August 2024	This guideline replaces Evolent Clinical Guideline 229 for Neutron Beam Therapy (NBT)
	 This guideline replaces Evolent Clinical Guideline 221 for Proton Beam Radiation Therapy
	 This guideline replaces Evolent Utilization Management External Radiation Therapy Policy 2010 for Neutron Beam and Proton Beam Radiation Therapy

LEGAL AND COMPLIANCE

Guideline Approval

Committee

Reviewed / Approved by Evolent Specialty Clinical Guideline Review Committee

Disclaimer

Evolent Clinical Guidelines do not constitute medical advice. Treating health care professionals are solely responsible for diagnosis, treatment, and medical advice. Evolent uses Clinical Guidelines in accordance with its contractual obligations to provide utilization management. Coverage for services varies for individual members according to the terms of their health care coverage or government program. Individual members' health care coverage may not utilize some Evolent Clinical Guidelines. A list of procedure codes, services or drugs may not be all inclusive and does not imply that a service or drug is a covered or non-covered service or drug. Evolent reserves the right to review and update this Clinical Guideline in its sole discretion. Notice of any changes shall be provided as required by applicable provider agreements and laws or regulations. Members should contact their Plan customer service representative for specific coverage information.

REFERENCES

- 1. Poon D M C, Wu S, Ho L, Cheung K Y, Yu B. Proton Therapy for Prostate Cancer: Challenges and Opportunities. Cancers (Basel). 2022; 14: 10.3390/cancers14040925.
- 2. NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Head and Neck Cancers Version 4.2024. National Comprehensive Cancer Network®. 2024.
- 3. Pfister D G, Spencer S, Brizel D M, Burtness B, Busse P M et al. Head and Neck Cancers, Version 1.2015. Journal of the National Comprehensive Cancer Network. 2015; 13: 847 856. 10.6004/jnccn.2015.0102.
- 4. ASTRO. Model Policies: Proton Beam Therapy. American Society for Radiation Oncology. 2022.
- 5. Rubinstein L V, Korn E L, Freidlin B, Hunsberger S, Ivy S P. Design Issues of Randomized Phase II Trials and a Proposal for Phase II Screening Trials. Journal of Clinical Oncology. 2005; 23: 7199 7206. 10.1200/JCO.2005.01.149.
- 6. Fukuda K, Okumura T, Abei M, Fukumitsu N, Ishige K et al. Long-term outcomes of proton beam therapy in patients with previously untreated hepatocellular carcinoma. Cancer Sci. 2017; 108: 497 503. https://doi.org/10.1111/cas.13145.
- 7. Fukumitsu N, Sugahara S, Nakayama H, Fukuda K, Mizumoto M et al. A Prospective Study of Hypofractionated Proton Beam Therapy for Patients With Hepatocellular Carcinoma. International Journal of Radiation Oncology, Biology, Physics. 2009; 74: 831 836. 10.1016/j.ijrobp.2008.10.073.
- 8. Hong T S, Wo J Y, Yeap B Y, Ben-Josef E, McDonnell E I et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Journal of Clinical Oncology. 2015; 34: 460 468. 10.1200/JCO.2015.64.2710.
- 9. Kim T H, Koh Y H, Kim B H, Kim M J, Lee J H et al. Proton beam radiotherapy vs. radiofrequency ablation for recurrent hepatocellular carcinoma: A randomized phase III trial. Journal of Hepatology. 2021; 74: 603 612. 10.1016/j.jhep.2020.09.026.
- 10. Tao R, Krishnan S, Bhosale P R, Javle M M, Aloia T A et al. Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients With Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. Journal of Clinical Oncology. 2015; 34: 219 226. 10.1200/JCO.2015.61.3778.
- 11. Hashimoto T, Tokuuye K, Fukumitsu N, Igaki H, Hata M et al. Repeated proton beam therapy for hepatocellular carcinoma. International Journal of Radiation Oncology, Biology, Physics. 2006; 65: 196 202. 10.1016/j.ijrobp.2005.11.043.
- 12. Hata M, Tokuuye K, Sugahara S, Fukumitsu N, Hashimoto T et al. Proton beam therapy for hepatocellular carcinoma patients with severe cirrhosis. Strahlenther Onkol. 2006; 182: 713-20.
- 13. Hata M, Tokuuye K, Sugahara S, Kagei K, Igaki H et al. Proton beam therapy for hepatocellular carcinoma with portal vein tumor thrombus. Cancer. 2005; 104: 794 801. https://doi.org/10.1002/cncr.21237.
- 14. Sugahara S, Oshiro Y, Nakayama H, Fukuda K, Mizumoto M et al. Proton Beam Therapy for Large Hepatocellular Carcinoma. International Journal of Radiation Oncology, Biology, Physics. 2010; 76: 460 466. 10.1016/j.ijrobp.2009.02.030.
- 15. Lee A, Kitpanit S, Chilov M, Langendijk J A, Lu J. A Systematic Review of Proton Therapy for the Management of Nasopharyngeal Cancer. International Journal of Particle Therapy. 2021; 8: 119 130. https://doi.org/10.14338/IJPT-20-00082.1.

- 16. Lewis G D, Holliday E B, Kocak–Uzel E, Hernandez M, Garden A S et al. Intensity-modulated proton therapy for nasopharyngeal carcinoma: Decreased radiation dose to normal structures and encouraging clinical outcomes. Head Neck. 2016; 38: E1886 E1895. https://doi.org/10.1002/hed.24341.
- 17. McDonald M W, Liu Y, Moore M G, Johnstone P A S. Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy. Radiation Oncology. 2016; 11: 10.1186/s13014-016-0600-3.
- 18. Patel S H, Wang Z, Wong W W, Murad M H, Buckey C R et al. Charged particle therapy versus photon therapy for paranasal sinus and nasal cavity malignant diseases: a systematic review and meta-analysis. The Lancet Oncology. 2014; 15: 1027 1038. 10.1016/S1470-2045(14)70268-2.
- 19. Russo A L, Adams J A, Weyman E A, Busse P M, Goldberg S I et al. Long-Term Outcomes After Proton Beam Therapy for Sinonasal Squamous Cell Carcinoma. International Journal of Radiation Oncology, Biology, Physics. 2016; 95: 368 376. 10.1016/j.ijrobp.2016.02.042.
- 20. Frank S J, Busse P, Rosenthal D I, Hernandez M, Swanson D M et al. Phase III randomized trial of intensity-modulated proton therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for the treatment of head and neck oropharyngeal carcinoma (OPC). Journal of Clinical Oncology. 2024; 42: 10.1200/JCO.2024.42.16_suppl.6006.
- 21. Amichetti M, Amelio D, Cianchetti M, Maurizi Enrici R, Minniti G. A systematic review of proton therapy in the treatment of chondrosarcoma of the skull base. Neurosurgical Review. 2010; 33: 155 165. 10.1007/s10143-009-0235-z.
- 22. Amichetti M, Cianchetti M, Amelio D, Enrici R M, Minniti G. Proton therapy in chordoma of the base of the skull: a systematic review. Neurosurgical Review. 2009; 32: 403 416. 10.1007/s10143-009-0194-4.
- 23. Indelicato D J, Rotondo R L, Begosh-Mayne D, Scarborough M T, Gibbs C P et al. A Prospective Outcomes Study of Proton Therapy for Chordomas and Chondrosarcomas of the Spine. International Journal of Radiation Oncology, Biology, Physics. 2016; 95: 297 303. 10.1016/j.ijrobp.2016.01.057.
- 24. DeLaney T F, Liebsch N J, Pedlow F X, Adams J, Weyman E A et al. Long-term results of Phase II study of high dose photon/proton radiotherapy in the management of spine chordomas, chondrosarcomas, and other sarcomas. JSurgOncol. 2014; 110: 115 122. https://doi.org/10.1002/jso.23617.
- 25. Rotondo R L, Folkert W, Liebsch N J, Chen Y E, Pedlow F X et al. High-dose proton-based radiation therapy in the management of spine chordomas: outcomes and clinicopathological prognostic factors. Journal of Neurosurgery Spine. 2015; 23: 788 797. https://doi.org/10.3171/2015.3.SPINE14716.
- 26. Kabolizadeh P, Chen Y, Liebsch N, Hornicek F J, Schwab J H et al. Updated Outcome and Analysis of Tumor Response in Mobile Spine and Sacral Chordoma Treated With Definitive High-Dose Photon/Proton Radiation Therapy. International Journal of Radiation Oncology, Biology, Physics. 2017; 97: 254 262. 10.1016/j.ijrobp.2016.10.006.
- 27. Murray F R, Snider J W, Bolsi A, Lomax A J, Walser M et al. Long-Term Clinical Outcomes of Pencil Beam Scanning Proton Therapy for Benign and Non-benign Intracranial Meningiomas. International Journal of Radiation Oncology, Biology, Physics. 2017; 99: 1190 1198. 10.1016/j.ijrobp.2017.08.005.
- 28. Sato H, Mizumoto M, Okumura T, Sakurai H, Sakamoto N et al. Long-term outcomes of patients with unresectable benign meningioma treated with proton beam therapy. J Radiat Res. 2021; 62: 427 437. 10.1093/jrr/rrab017.

Page 15 of 18

- 29. Hattangadi-Gluth J A, Chapman P H, Kim D, Niemierko A, Bussière M R et al. Single-Fraction Proton Beam Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations. International Journal of Radiation Oncology, Biology, Physics. 2014; 89: 338 346. 10.1016/j.ijrobp.2014.02.030.
- 30. Seifert V, Stolke D, Mehdorn H M, Hoffmann B. Clinical and radiological evaluation of long-term results of stereotactic proton beam radiosurgery in patients with cerebral arteriovenous malformations. Journal of Neurosurgery. 1994; 81: 683 689. https://doi.org/10.3171/jns.1994.81.5.0683.
- 31. Barnes C J, Bush D A, Grove R I, Loredo L N, Slater J D. Fractionated Proton Beam Therapy for Acoustic Neuromas: Tumor Control and Hearing Preservation. International Journal of Particle Therapy. 2018; 4: 28 36. https://doi.org/10.14338/IJPT-14-00014.1.
- 32. Vernimmen F J, Mohamed Z, Slabbert J P, Wilson J. Long-term results of stereotactic proton beam radiotherapy for acoustic neuromas. Radiotherapy and Oncology. 2009; 90: 208 212. 10.1016/j.radonc.2008.11.004.
- 33. Zhu S, Rotondo R, Mendenhall W M, Dagan R, Lewis D et al. Long-Term Outcomes of Fractionated Stereotactic Proton Therapy for Vestibular Schwannoma: A Case Series. International Journal of Particle Therapy. 2018; 4: 37 46. https://doi.org/10.14338/IJPT-17-00032.1.
- 34. Koetsier K S, Hensen E F, Wiggenraad R, Lips I M, van Benthem P P G et al. Clinical outcomes and toxicity of proton radiotherapy for vestibular schwannomas: a systematic review. Journal of Radiation Oncology. 2019; 8: 357 368. 10.1007/s13566-019-00410-1.
- 35. Wattson D A, Tanguturi S K, Spiegel D Y, Niemierko A, Biller B M et al. Outcomes of Proton Therapy for Patients With Functional Pituitary Adenomas. International Journal of Radiation Oncology, Biology, Physics. 2014; 90: 532 539. 10.1016/j.ijrobp.2014.06.068.
- 36. Petit J H, Biller B M K, Yock T I, Swearingen B, Coen J J et al. Proton Stereotactic Radiotherapy for Persistent Adrenocorticotropin-Producing Adenomas. J Clin Endocrinol Metab. 2008; 93: 393 399. 10.1210/jc.2007-1220.
- 37. Petit J H, Biller B M, Coen J J, Swearingen B, Ancukiewicz M et al. Proton Stereotactic Radiosurgery in Management of Persistent Acromegaly. Endocrine Practice. 2007; 13: 726 734. 10.4158/EP.13.7.726.
- 38. Aghi M K, Petit J, Chapman P, Loeffler J, Klibanski A et al. Management of recurrent and refractory Cushing's disease with reoperation and/or proton beam radiosurgery. Clinical neurosurgery. 2008; 55: 141-4.
- 39. Ronson B B, Schulte R W, Han K P, Loredo L N, Slater J M. Fractionated proton beam irradiation of pituitary adenomas. International Journal of Radiation Oncology, Biology, Physics. 2006; 64: 425 434. 10.1016/j.ijrobp.2005.07.978.
- 40. Böker A, Pilger D, Cordini D, Seibel I, Riechardt A I et al. Neoadjuvant proton beam irradiation vs. adjuvant ruthenium brachytherapy in transscleral resection of uveal melanoma. Graefe's Archive for Clinical and Experimental Ophthalmology. 2018; 256: 1767 1775. 10.1007/s00417-018-4032-7.
- 41. Conway R M, Poothullil A M, Daftari I K, Weinberg V, Chung J E. Estimates of Ocular and Visual Retention Following Treatment of Extra-Large Uveal Melanomas by Proton Beam Radiotherapy. Arch Ophthalmol. 2006; 124: 838 843. 10.1001/archopht.124.6.838.
- 42. Desjardins L, Lumbroso-Le Rouic L, Levy-Gabriel C, Dendale R, Delacroix S et al. Combined Proton Beam Radiotherapy and Transpupillary Thermotherapy for Large Uveal Melanomas: A Randomized Study of 151 Patients. Ophthalmic Res. 2006; 38: 255 260. 10.1159/000094834.

- 43. Wang Z, Nabhan M, Schild S E, Stafford S L, Petersen I A et al. Charged Particle Radiation Therapy for Uveal Melanoma: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology, Biology, Physics. 2013; 86: 18 26. 10.1016/j.ijrobp.2012.08.026.
- 44. Egger E, Zografos L, Schalenbourg A, Beati D, Bhringer T et al. Eye retention after proton beam radiotherapy for uveal melanoma. International Journal of Radiation Oncology, Biology, Physics. 2003; 55: 867 880. 10.1016/S0360-3016(02)04200-1.
- 45. Paulino A C, Mahajan A, Ye R, Grosshans D R, Fatih Okcu M et al. Ototoxicity and cochlear sparing in children with medulloblastoma: Proton vs. photon radiotherapy. Radiotherapy and Oncology. 2018; 128: 128 132. 10.1016/j.radonc.2018.01.002.
- 46. NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Pediatric Hodgkin Lymphoma Version 1.2024. National Comprehensive Cancer Network®. 2024.
- 47. NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Adolescent and Young Adult (AYA) Oncology 2024. National Comprehensive Cancer Network®. 2024;
- 48. Vassantachart A, Olch A J, Jones M, Marques C, Ronckers C et al. A comprehensive review of 30 years of pediatric clinical trial radiotherapy dose constraints. Pediatr Blood Cancer. 2023; 70: e30270. https://doi.org/10.1002/pbc.30270.
- 49. Janot F, de Raucourt D, Benhamou E, Ferron C, Dolivet G et al. Randomized Trial of Postoperative Reirradiation Combined With Chemotherapy After Salvage Surgery Compared With Salvage Surgery Alone in Head and Neck Carcinoma. Journal of Clinical Oncology. 2008; 26: 5518 5523. 10.1200/JCO.2007.15.0102.
- 50. Lee A, Woods R, Mahfouz A, Kitpanit S, Cartano O et al. Evaluation of Proton Therapy Reirradiation for Patients With Recurrent Head and Neck Squamous Cell Carcinoma. JAMA Netw Open. 2023; 6: e2250607 e2250607. 10.1001/jamanetworkopen.2022.50607.
- 51. McDonald M W, Zolali-Meybodi O, Lehnert S J, Estabrook N C, Liu Y et al. Reirradiation of Recurrent and Second Primary Head and Neck Cancer With Proton Therapy. International Journal of Radiation Oncology, Biology, Physics. 2016; 96: 808 819. 10.1016/j.ijrobp.2016.07.037.
- 52. Simone C B, Plastaras J P, Jabbour S K, Lee A, Lee N Y et al. Proton Reirradiation: Expert Recommendations for Reducing Toxicities and Offering New Chances of Cure in Patients With Challenging Recurrence Malignancies. Seminars in Radiation Oncology. 2020; 30: 253 261. https://doi.org/10.1016/j.semradonc.2020.02.007.
- 53. Verma V, Rwigema J M, Malyapa R S, Regine W F, Simone C B I. Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation. Radiotherapy and Oncology. 2017; 125: 21 30. 10.1016/j.radonc.2017.08.005.
- 54. Doyen J, Aloi D, Groulier A, Vidal M, Lesueur P et al. Role of proton therapy in reirradiation and in the treatment of sarcomas. Cancer/Radiothérapie. 2021; 25: 550 553. https://doi.org/10.1016/j.canrad.2021.06.024.
- 55. Hotca A, Sindhu K K, Lehrer E J, Hartsell W F, Vargas C et al. Reirradiation With Proton Therapy for Recurrent Malignancies of the Esophagus and Gastroesophageal Junction: Results of the Proton Collaborative Group Multi-Institutional Prospective Registry Trial. Advances in Radiation Oncology. 2024; 9: 10.1016/j.adro.2024.101459.
- 56. Choi J I, McCormick B, Park P, Millar M, Walker K et al. Comparative Evaluation of Proton Therapy and Volumetric Modulated Arc Therapy for Brachial Plexus Sparing in the Comprehensive Reirradiation of High-Risk Recurrent Breast Cancer. Advances in Radiation Oncology. 2024; 9: 10.1016/j.adro.2023.101355.

- 57. American Cancer Society. Radiation Therapy for Salivary Gland Cancer. American Cancer Society. 2022.
- 58. Buchholz T A, Laramore G E, Griffin B R, Koh W, Griffin T W. The role of fast neutron radiation therapy in the management of advanced salivary gland malignant Neoplasms. Cancer. 1992; 69: 2779 2788. https://doi.org/10.1002/1097-0142(19920601)69:11<2779::AID-CNCR2820691125&gt;3.0.CO;2-N.
- 59. Douglas J G, Lee S, Laramore G E, Austin-Seymour M, Koh W. Neutron radiotherapy for the treatment of locally advanced major salivary gland tumors. Head Neck. 1999; 21: 255 263. https://doi.org/10.1002/(SICI)1097-0347(199905)21:3<255::AID-HED11&gt;3.0.CO;2-2.
- 60. Krüll A, Schwarz R, Engenhart R, Huber P, Lessel A et al. European results in neutron therapy of malignant salivary gland tumors. Bulletin du Cancer/Radiothérapie. 1996; 83: 125s 129s. https://doi.org/10.1016/0924-4212(96)84897-3.
- 61. NCI. Salivary Gland Cancer Treatment (PDQ®)—Health Professional Version. National Cancer Institute. Updated: August 22, 2023.
- 62. Douglas J G, Laramore G E, Austin-Seymour M, Koh W, Stelzer K. Treatment of locally advanced adenoid cystic carcinoma of the head and neck with neutron radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 2000; 46: 551 557. 10.1016/S0360-3016(99)00445-9.
- 63. Illinois Insurance Code. Section 356z.61 Proton beam therapy. 2024; https://www.ilga.gov/legislation/publicacts/fulltext.asp?Name=103-0325.
- 64. Oklahoma Statutes. Title 36 Section 6060.9b Cancer Therapy Coverage standard for proton radiation therapy. 2016; https://oksenate.gov/sites/default/files/2019-12/os36.pdf.
- 65. Oregon Rules of Civil Process. Insurance Code Part ORS 743.A130 Proton Beam Therapy. 2024; https://oregon.public.law/statutes/ors_743A.130.
- 66. General Assembly of Virginia. H 987: An act to amend and reenact §38.2-3407.14:1 of the Code of Virginia, relating to proton radiation therapy; clinical evidence for decisions on coverage. 2024; https://law.lis.virginia.gov/vacode/title38.2/chapter34/section38.2-3407.14:1/.
- 67. Washington State Health Care Authority. Health Technology Clinical Committee Coverage Topic 20190517A Proton Beam Therapy Re-review. 2019; https://www.hca.wa.gov/about-hca/programs-and-initiatives/health-technology-assessment/proton-beam-therapy.