EVOLENT CLINICAL GUIDELINE 046 FOR SPINAL CANAL MRA/MRV | Guideline or Policy Number: | Applicable Codes | | | |---|--------------------|----------------------|--| | Evolent_CG_046 | | | | | "Evolent" refers to Evolent Health LLC and Evolent Specialty Services, Inc. © 2008 - 2025 Evolent. All rights Reserved. | | | | | Original Date: | Last Revised Date: | Implementation Date: | | | May 2008 | May 2024 | January 2025 | | ## **TABLE OF CONTENTS** | STATEMENT | 2 CANAL MAGNETIC RESONANCE ANGIOGRAPHY (MRA) 2 DETERMINATE FINDINGS ON PRIOR IMAGING 3 3 SSS 3 IR VENOGRAPHY 3 FORMATIONS (AVMS) 4 FERRED STUDIES 4 | |---|---| | GENERAL INFORMATION | 2 | | Purpose | | | INDICATIONS FOR SPINAL CANAL MAGNETIC RESONANCE ANGIOGRAPHY (MRA) | | | FURTHER EVALUATION OF INDETERMINATE FINDINGS ON PRIOR IMAGING | 3 | | CODING AND STANDARDS | | | Coding | 3 | | CPT Codes | | | APPLICABLE LINES OF BUSINESS | | | BACKGROUND | | | SPINAL MR ANGIOGRAPHY/MR VENOGRAPHY | 3 | | SPINAL ARTERIOVENOUS MALFORMATIONS (AVMS) | 4 | | SPINAL ATERIES/VEINS | | | CONTRAINDICATION AND PREFERRED STUDIES | | | POLICY HISTORY | 5 | | Summary | 5 | | LEGAL AND COMPLIANCE | | | GUIDELINE APPROVAL | 5 | | Committee | | | DISCLAIMER | | | DEFEDENCES | • | #### **STATEMENT** #### **General Information** It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. If applicable: All prior relevant imaging results and the reason that alternative imaging cannot be performed must be included in the documentation submitted. Where a specific clinical indication is not directly addressed in this guideline, medical necessity determination will be made based on widely accepted standard of care criteria. These criteria are supported by evidence-based or peer-reviewed sources such as medical literature, societal guidelines and state/national recommendations. ## **Purpose** Spinal magnetic resonance angiography (MRA) allows for more effective and noninvasive screening for vascular lesions than magnetic resonance imaging (MRI) alone. It may improve characterization of normal and abnormal intradural vessels while maintaining good spatial resolution. Spinal MRA may be used for the evaluation of spinal arteriovenous malformations, as well as injuries to blood vessels supplying the spine and cord. # INDICATIONS FOR SPINAL CANAL MAGNETIC RESONANCE ANGIOGRAPHY (MRA) - Evaluation of spinal arteriovenous malformation (AVM)(1,2,3,4) - Myelopathy when the suspected etiology is a compromise of blood flow or drainage to the spinal cord⁽⁵⁾ - Evaluation of a known cervical spine fracture, disc herniation, infection, or venous thrombosis where there is concern for vascular pathology (compression or thrombosis) compromising spinal cord blood flow or venous drainage⁽⁶⁾ - Evaluation of known or suspected vertebral artery injury when there is also concern for vascular compromise to the spinal canal and its contents (otherwise neck MRA or CTA is sufficient to evaluate vertebral artery injury)⁽⁷⁾ - Preoperative evaluation (e.g., localization of the spinal arteries prior to complex spinal surgery, aortic aneurysm repair, or characterization of suspected vascular lesion of the spinal canal and its contents)^(8,9) - Follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention, or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.⁽¹⁾ ## Further Evaluation of Indeterminate Findings on Prior Imaging Unless follow up is otherwise specified within the guideline - For initial evaluation of an inconclusive finding on a prior imaging report that requires further clarification - One follow-up exam of a prior indeterminate MR/CT finding to ensure no suspicious interval change has occurred. (No further surveillance unless specified as highly suspicious or change was found on last follow-up exam). #### **CODING AND STANDARDS** ## Coding **CPT Codes** 72159 ## **Applicable Lines of Business** | \boxtimes | CHIP (Children's Health Insurance Program) | |-------------|--| | \boxtimes | Commercial | | \boxtimes | Exchange/Marketplace | | \boxtimes | Medicaid | | \boxtimes | Medicare Advantage | ### **BACKGROUND** ## Spinal MR Angiography/MR Venography (10) Typically, contrast-enhanced 3D time of flight techniques and contrast-enhanced CT angiography (CTA) have been used for evaluation of the spinal arteries, veins, and related pathology as a non-invasive alternative to the gold standard catheter angiography. Magnetic resonance angiography is well suited to patients who cannot receive iodinated contrast. CTA has the advantage over MRA of providing greater spatial resolution, can image the entire spine during one contrast bolus, and provides for a faster exam time that is less prone to motion artifact. MRA is limited by a finite field of view, typically ≤ 50 cm. ⁽⁸⁾ MRI has the advantage over CT of detecting areas of ischemia via diffusion weighted imaging as is very sensitive in detecting recurrent spinal arteriovenous fistulas post-treatment. (1) ## **Spinal Arteriovenous Malformations (AVMs)** Spinal cord arteriovenous malformations are comprised of snarled tangles of arteries and veins that affect the spinal cord. They are fed by spinal cord arteries and drained by spinal cord veins. Spinal dural arteriovenous (AV) fistulas are the most encountered vascular malformation of the spinal cord and are a treatable cause of progressive paraparesis. Magnetic resonance angiography (MRA) can record the pattern and velocity of blood flow through vascular lesions as well as the flow of cerebrospinal fluid throughout the spinal cord. MRA can define the vascular malformation and may assist in determining treatment. (11) ## **Spinal Arteries/Veins** Vascular malformations, trauma, disc herniations, neoplasms, and coagulopathies or infection causing thrombosis can compromise the spinal cord blood supply and drainage. The spinal cord arterial supply is derived from the anterior spinal artery, posterolateral spinal artery, and the arteria radicularis magna or artery of Adamkiewicz (AKA). The anterior spinal artery supplies the anterior two-thirds of the cord and arises from the vertebral arteries. It receives contributions from the ascending cervical artery, the inferior thyroid artery, the intercostal arteries, the lumbar artery, the iliolumbar artery, lateral sacral arteries, and the AKA. The AKA arises on the left side of the aorta between the T8 and L1 segments, to anastomose with the anterior spinal artery and supply the lower two-thirds of the spinal cord. Two posterolateral spinal arteries arise from the posteroinferior cerebellar arteries and supply the posterior third (posterior columns, posterior roots, and dorsal horns) of the spinal cord. The spinal venous system is divided into intrinsic and extrinsic veins differentiated by their location within the spinal canal or extrinsic to the canal, respectively. They drain into the radiculomedullary veins, subsequently to paravertebral and intervertebral plexuses, then to the segmental veins that eventually drain into the ascending lumbar veins, azygos system, and pelvic venous plexuses. #### **Contraindication and Preferred Studies** Contraindications and reasons why a CT/CTA cannot be performed may include: impaired renal function, significant allergy to IV contrast, pregnancy (depending on trimester) Contraindications and reasons why an MRI/MRA cannot be performed may include: impaired renal function, claustrophobia, non-MRI compatible devices (such as non-compatible defibrillator or pacemaker), metallic fragments in a high-risk location, patient exceeds wight limit/dimensions of MRI machine. #### **POLICY HISTORY** ### **Summary** | Date | Summary | |----------|---| | May 2024 | Updated references and background Contraindications and preferred studies section added to the background | | May 2023 | Updated references General Information moved to beginning of guideline with added statement on clinical indications not addressed in this guideline Added statement regarding further evaluation of indeterminate findings on prior imaging | #### LEGAL AND COMPLIANCE ## **Guideline Approval** #### Committee Reviewed / Approved by Evolent Specialty Clinical Guideline Review Committee #### **Disclaimer** Evolent Clinical Guidelines do not constitute medical advice. Treating health care professionals are solely responsible for diagnosis, treatment, and medical advice. Evolent uses Clinical Guidelines in accordance with its contractual obligations to provide utilization management. Coverage for services varies for individual members according to the terms of their health care coverage or government program. Individual members' health care coverage may not utilize some Evolent Clinical Guidelines. A list of procedure codes, services or drugs may not be all inclusive and does not imply that a service or drug is a covered or non-covered service or drug. Evolent reserves the right to review and update this Clinical Guideline in its sole discretion. Notice of any changes shall be provided as required by applicable provider agreements and laws or regulations. Members should contact their Plan customer service representative for specific coverage information. #### REFERENCES - 1. Mathur S, Symons S, Huynh T, Marotta T, Aviv R. First-Pass Contrast-Enhanced MR Angiography in Evaluation of Treated Spinal Arteriovenous Fistulas: Is Catheter Angiography Necessary? AJNR Am J Neuroradiol. 2017; 38: 200-205. 10.3174/ajnr.A4971. - 2. Mathur S, Symons S, Huynh T, Muthusami P, Montanera W. First-Pass Contrast-Enhanced MRA for Pretherapeutic Diagnosis of Spinal Epidural Arteriovenous Fistulas with Intradural Venous Reflux. AJNR. American journal of neuroradiology. 2017; 38: 195-199. 10.3174/ajnr.A5008. - 3. Shin J, Choi Y, Park B, Shin N, Jang J et al. Diagnostic accuracy and efficiency of combined acquisition of low-dose time-resolved and single-phase high-resolution contrast-enhanced magnetic resonance angiography in a single session for pre-angiographic evaluation of spinal vascular disease. PLoS One. 2019; 14: e0214289. 10.1371/journal.pone.0214289. - 4. Wójtowicz K, Przepiorka L, Maj E, Kujawski S, Marchel A. Usefulness of time-resolved MR angiography in spinal dural arteriovenous fistula (SDAVF)-a systematic review and meta-analysis. Neurosurgical review. 2023; 47: 9. 10.1007/s10143-023-02242-7. - 5. Agarwal V, Shah L, Parsons M, Boulter D, Cassidy R et al. ACR Appropriateness Criteria® Myelopathy: 2021 Update. Journal of the American College of Radiology. 2021; 18: S73 S82. 10.1016/j.jacr.2021.01.020. - 6. Vargas M, Gariani J, Sztajzel R, Barnaure-Nachbar I, Delattre B et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. AJNR Am J Neuroradiol. 2015; 36: 825-30. 10.3174/ajnr.A4118. - 7. Montalvo M, Bayer A, Azher I, Knopf L, Yaghi S. Spinal Cord Infarction Because of Spontaneous Vertebral Artery Dissection. Stroke. 2018; 49: e314-e317. 10.1161/strokeaha.118.022333. - 8. Backes W, Nijenhuis R. Advances in spinal cord MR angiography. AJNR Am J Neuroradiol. 2008; 29: 619-31. 10.3174/ajnr.A0910. - 9. Mordasini P, El-Koussy M, Schmidli J, Bonel H, Ith M et al. Preoperative mapping of arterial spinal supply using 3.0-T MR angiography with an intravasal contrast medium and high-spatial-resolution steady-state. Eur J Radiol. 2012; 81: 979-84. 10.1016/j.ejrad.2011.02.025. - 10. American College of Radiology (ACR), American Society of Neuroradiology (ASNR), Society of Computed Body Tomography and Magnetic Resonance (SCBT-MR), Society for Skeletal Radiology (SSR). ACR-ASNR-SABI-SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF MAGNETIC RESONANCE IMAGING (MRI) OF THE ADULT SPINE. American College of Radiology. 2023; Accessed March 5, 2024: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Adult-Spine.pdf. - 11. National Institute of Neurological Disorders and Stroke. Arteriovenous Malformations and Other Vascular Lesions of the Central Nervous System Fact Sheet. 2022; 2023: